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Preface to the Third Edition

The Third Edition has been gently modernized, leaving the overview of traditional,
theoretical, and computational linguistics, analytic philosophy of language, and math-
ematical complexity theory with their historical backgrounds intact. The format of the
empirical analyses of English and German syntax and semantics has been adapted to
current practice. Sects. 22.3–24.5 have been rewritten to focus more sharply on the
construction of a talking robot.

Because the Second Edition is quite long, one aim of the present edition has been to
shorten the number of pages. Little is lost, however, because later publications make
up for a reduction of about 10 percent. The broad, leisurely style induced by the book’s
origin as material for a four semester introductory lecture course, however, has been
preserved.

Special thanks to Ronan Nugent, Senior Editor of Computer Science at Springer,
for his continued support.

Roland HausserErlangen, Germany
June 2013
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Remark on the Use of Risci

Science books often use a menagerie of tables, graphs, examples, definitions, theo-
rems, lemmata, schemata, etc., which are either (i) not numbered or (ii) use different
counters for each kind. For the author, (i) makes it difficult to refer to a particular item.
For the reader, (ii) makes it difficult to find the item.

As a remedy, we use a uniform container called riscus1 to hold any of such items.
A riscus begins with a numbered head line and ends when normal text resumes. In
this book, the number of a riscus consists of three parts, e.g., 3.2.1, which specify the
location in terms of the chapter within the text, the section within the chapter, and the
riscus within the section.

Independently of the riscus numbering, the head line may classify and number the
item contained, as in the following fictitious example:

3.2.1 THEOREM 9: THE POLYNOMIAL COMPLEXITY OF CF LANGUAGES

Content of the theorem followed by the proof.

Elsewhere in the text, the above riscus may be referred to with something like As
shown in 3.2.1, . . . or In Theorem 9 (3.2.1) . . . . In this way, the riscus numbering
allows the author to be brief yet precise because the reader may be guided to a more
detailed presentation given in another place. The method works regardless of whether
the book is a hard copy or an eBook.

The numbering of a riscus may be provided automatically, for example, by using
the LATEX \subsection command for riscus headings. The riscus numbering, like that
of chapters and sections, may be hooked up with automatic cross-referencing, for
example, by adding \usepackage{hyperref} to the LATEX preamble of the text.

As a result, the reader of an eBook may click on a three part number to be trans-
ported automatically to the riscus in question, and may get back to the earlier position
with a simple command like cntrl [. The comfort of accessing a riscus directly, instead
of having to leaf through the chapter and the section as in a hard copy, is perhaps not
the least advantage added by the transition from a hard copy to an eBook.

Roland HausserErlangen, Germany

1 riscus <i> m, is the Latin word for suitcase. A riscus was made of woven willow branches
covered with fur.
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Preface to the First Edition

The central task of a future-oriented computational linguistics is the development of
cognitive machines which humans can freely talk with in their respective natural lan-
guage. In the long run, this task will ensure the development of a functional theory of
language, an objective method of verification, and a wide range of applications.

Natural communication requires not only verbal processing, but also non-verbal
recognition and action. Therefore the content of this textbook is organized as a theory
of language for the construction of talking robots. The main topic is the mechanism of
natural language communication in both the speaker and the hearer.

The content is divided into the following parts:

I. Theory of Language
II. Theory of Grammar
III. Morphology and Syntax
IV. Semantics and Pragmatics

Each part consists of 6 chapters. Each of the 24 chapters consists of 5 sections. A total
of 797 exercises help in reviewing key ideas and important problems.

Part I begins with current applications of computational linguistics. Then it de-
scribes a new theory of language, the functioning of which is illustrated by the robot
CURIOUS. This theory is referred to with the acronym SLIM, which stands for Surface
compositional Linear Internal Matching. It includes a cognitive foundation of seman-
tic primitives, a theory of signs, a structural delineation of the components syntax,
semantics, and pragmatics, as well as their functional integration in the speaker’s ut-
terance and the hearer’s interpretation. The presentation refers to other contemporary
theories of language, especially those of Chomsky and Grice, as well as to the classic
theories of Frege, Peirce, de Saussure, Bühler, and Shannon and Weaver, explaining
their formal and methodological foundations as well as their historical background
and motivations.

Part II presents the theory of formal grammar and its methodological, mathemat-
ical, and computational roles in the description of natural languages. A description
of Categorial (C) Grammar and Phrase Structure (PS) Grammar is combined with
an introduction to the basic notions and linguistic motivation of generative gram-
mar. Further topics are the declarative vs. procedural aspects of parsing and gener-

ix



x Preface to the First Edition

ation, type transparency, as well as the relation between formalisms and complexity
classes. It is shown that the principle of possible substitutions causes empirical and
mathematical problems for the description of natural language. As an alternative, the
principle of possible continuations is formalized as LA Grammar. LA stands for the
left-associative derivation order which models the time-linear nature of language. Ap-
plications of LA Grammar to relevant artificial languages show that its hierarchy of
formal languages is orthogonal to that of PS Grammar. Within the LA hierarchy, natu-
ral language is in the lowest complexity class, namely the class of C1 languages which
parse in linear time.

Part III describes the morphology and syntax of natural language. A general descrip-
tion of the notions word, word form, morpheme, and allomorph, the morphological
processes of inflection, derivation, and composition, as well as the different possi-
ble methods of automatic word form recognition is followed by the morphological
analysis of English within the framework of LA Grammar. Then the syntactic princi-
ples of valency, agreement, and word order are explained within the left-associative
approach. LA Grammars for English and German are developed by systematically
extending a small initial system to handle more and more constructions such as the
fixed vs. free word order of English and German, respectively, the structure of com-
plex noun phrases and complex verbs, interrogatives, subordinate clauses, etc. These
analyses are presented in the form of explicit grammars and sample derivations.

Part IV describes the semantics and pragmatics of natural language. The general
description of language interpretation begins by comparing three different types of
semantics, namely those of logical languages, programming languages, and natural
languages. Based on Tarski’s foundation of logical semantics and his reconstruction
of the Epimenides paradox, the possibility of applying logical semantics to natural
language is investigated. Alternative analyses of intensional contexts, propositional
attitudes, and the phenomenon of vagueness illustrate that different types of seman-
tics are based on different ontologies which greatly influence the empirical results.
It is shown how a semantic interpretation may cause an increase in complexity and
how this is to be avoided within the SLIM theory of language. The last two chap-
ters, 23 and 24, analyze the interpretation by the hearer and the conceptualization by
the speaker as a time-linear navigation through a database called word bank. A word
bank allows the storage of arbitrary propositional content and is implemented as a
highly restricted specialization of a classic (i.e., record-based) network database. The
autonomous navigation through a word bank is controlled by the explicit rules of suit-
able LA Grammars.

As supplementary reading the Survey of the State of the Art in Human Language
Technology, Ron Cole (ed.) 1998 is recommended. This book contains about 90 con-
tributions by different specialists giving detailed snapshots of their research in lan-
guage theory and technology.

Roland HausserErlangen, Germany
June 1999
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Introduction

I. BASIC GOAL OF COMPUTATIONAL LINGUISTICS

Transmitting information by means of a natural language like Chinese, English, or
German is a real and well structured procedure. This becomes evident when we at-
tempt to communicate with people who speak a foreign language. Even if the infor-
mation we want to convey is completely clear to us, we will not be understood by
our hearers if we fail to use their language adequately. Conversely, even if our foreign
language partners use their language as they always do, and without any problems,
we will not understand them.

The goal of computational linguistics is to reproduce the natural transmission of
information by modeling the speaker’s production and the hearer’s interpretation on a
suitable type of computer. This amounts to the construction of autonomous cognitive
machines (robots) which can freely communicate in natural language.

The development of speaking robots is not a matter of fiction, but a real scientific
task. Remarkably, however, theories of language have so far avoided a functional mod-
eling of the natural communication mechanism, concentrating instead on peripheral
aspects such as methodology (behaviorism), innate ideas (nativism), and scientific
truth (model theory).

II. TURING TEST

The task of modeling the mechanism of natural communication on the computer was
described in 1950 by ALAN TURING (1912–1954) in the form of an ‘imitation game’
known today as the Turing test. In this game, a human interrogator is asked to question
a male and a female partner in another room via a teleprinter in order to determine
which answer was given by the man and which by the woman.1 The people running the
test count how often the interrogator classifies his communication partners correctly
and how often he is wrong.

Then one of the two humans is replaced by a computer. The computer passes the
Turing test if the man or the woman replaced by the computer is simulated so well
that the guesses of the human interrogator are just as often right and wrong as with

1 As a corresponding situation in real life consider an author wondering about the gender of
the anonymous copyeditor courteously provided by the publisher.

xix
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the earlier natural partner. In this way Turing wanted to replace the question “Can
machines think?” with the question “Are there imaginable digital computers which
would do well in the imitation game?”

III. ELIZA PROGRAM

In its original intention, the Turing test requires the construction of an artificial cog-
nitive agent with a language behavior so natural that it cannot be distinguished from
that of a human. This presupposes complete coverage of the language data and of
the communicative functions in real time. At the same time, the test tries to avoid all
aspects not directly involved in human language behavior.2

However, the Turing test does not specify what cognitive structure the artificial agent
should have in order to succeed in the imitation game. It is therefore possible to mis-
interpret the aim of the Turing test as fooling the human interrogator rather than pro-
viding a functional model of communication on the computer. This was shown by the
Eliza program of Weizenbaum (1965).

The Eliza program simulates a psychiatrist encouraging the human interrogator, now
in the role of a patient, to talk more and more about him- or herself. Eliza works with a
list of words. Whenever one of these words is typed by the human interrogator/patient,
Eliza inserts it into one of several prefabricated sentence templates. For example,
when the word mother is used by the human, Eliza uses the template Tell me more
about your ___ to generate the sentence Tell me more about your mother.

Because of the way in which Eliza works, we know that Eliza has no understanding
of the dialog with the interrogator/patient. Thus, the construction of Eliza is not a
model of communication. If we regard the dialog between Eliza/psychiatrist and the
interrogator/patient as a modified Turing test, however, the Eliza program is successful
insofar as the interrogator/patient feels him- or herself understood and therefore does
not distinguish between a human and an artificial communication partner in the role
of a psychiatrist.

The Eliza program is the prototype of a smart solution (Sect. 2.3) in that it exploits
the restrictions of a highly specialized application to achieve a maximal effect with a
minimum of effort. The goal of computational linguistics, however, is a solid solution
in science: it must (i) explain the mechanism of natural communication theoretically
and (ii) verify the theory with an implementation (software machine) which may be
loaded with the language-dependent lexicon and compositional operations of any nat-
ural language. The speak and the hear mode of the implementation must work in any
practical application for which free natural language communication between humans
and machines is desired (15.1.3).

2 As an example of such an aspect, Turing (1950), p. 434, mentions the artificial recreation
of human skin.
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IV. MODELING NATURAL COMMUNICATION

Designing a talking robot provides an excellent opportunity for systematically de-
veloping the basic notions as well as the philosophical, mathematical, grammatical,
methodological, and programming aspects of computational linguistics. This is be-
cause modeling the mechanism of natural communication requires

– a theory of language which explains the natural transfer of information in a way
that is functionally coherent and mathematically explicit,

– a description of language data which is empirically complete for all components
of this theory of language, i.e., the lexicon, the morphology, the syntax, and the
semantics, as well as the pragmatics and the representation of the internal context,
and

– a degree of precision in the description of these components which supports a
straightforward computational implementation running in real time.

Fulfilling these requirements will take hard, systematic, goal-oriented work, but it will
be worth the effort.

For theory development, the construction of talking robots is of interest because an
electronically implemented model of communication may be tested both in terms of
the language behavior observed externally, and internally via direct access to its cog-
nitive states via the service channel. The work towards realizing unrestricted human-
computer communication in natural language is facilitated by the fact that the func-
tional model may be developed incrementally, beginning with a simplified, but fully
general system to which additional functions as well as additional natural languages
are added step by step.

For practical purposes, unrestricted communication with computers and robots in
natural languages will make the interaction with these machines maximally user
friendly and permit new, powerful ways of information processing. The use of ar-
tificial programming languages may then be limited to specialists developing and ser-
vicing the machines.

V. USING PARSERS

Computational linguistics analyzes natural languages automatically in terms of soft-
ware programs called parsers. The use of parsers influences the theoretical viewpoint
of linguistic research, distribution of funds, and everyday research practice as follows:

– Competition
Competing theories of grammar are measured with respect to the new standard of
how well they are suited for efficient parsing and how well they fit into a theory
of language designed to model the mechanism of natural language communica-
tion.
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– Funding
Adequate parsers for different languages are needed for an unlimited range
of practical applications, which has a major impact on the inflow of funds
for research, development, and teaching in this particular area of the humani-
ties.

– Verification
Programming grammars as parsers allows testing their empirical adequacy auto-
matically on arbitrarily large amounts of real data in the areas of word form recog-
nition and synthesis, syntactic analysis and generation, and the semantic-pragmatic
interpretation in both the speak and the hear mode.

The verification of a theory of language and grammar by means of testing an electronic
model in real applications is a new approach which clearly differs from the methods
of traditional linguistics, psychology, philosophy, and mathematical logic.

VI. THEORETICAL LEVELS OF ABSTRACTION

So far there are no electronic systems which model the functioning of natural commu-
nication so successfully that one can talk with them more or less freely. Furthermore,
researchers do not agree on how the mechanism of natural communication really
works. One may therefore question whether achieving a functional model of natu-
ral communication is possible in principle. I would like to answer this question with
an analogy3 from the recent history of science.

Today’s situation in computational linguistics resembles the development of me-
chanical flight before 1903.4 For hundreds of years humans had observed sparrows
and other birds in order to understand how they fly. Their goal was to become air-
borne in a similar manner. It turned out, however, that flapping wings did not work for
humans. This was taken by some as a basis for declaring human flight impossible in
principle, in accordance with the pious cliché “If God had intended humans to fly, He
would have given them wings.”5

3 See also CoL, p. 317.
4 In 1903, the brothers Orville and Wilbur Wright succeeded with the first manned motorized

flight.
5 Irrational reasons against a modeling of natural communication reside in the subconscious

fear of creating artificial beings resembling humans and having superhuman powers. Such
homunculi, which occur in the earliest of mythologies, are regarded widely as violating a
tabu. The tabu of Doppelgänger-similarity is described in Girard (1972).

Besides dark versions of homunculi, such as the cabalistically inspired Golem and the
electrically initialized creature of the surgeon Dr. Victor Frankenstein, the literature pro-
vides also more lighthearted variants. Examples are the piano-playing doll automata of the
18th century, based on the anatomical and physical knowledge of their time, and the me-
chanical beauty singing and dancing in The Tales of Hoffmann. More recent is the robot
C3P0 in George Lucas’ film Star Wars, which represents a positive view of human-like
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Today human air travel is commonplace. Furthermore, we now know that a sparrow
remains air-borne in accordance with the same aero-dynamic principles as a jumbo
jet. Thus, there is a certain level of abstraction at which the flights of sparrows and
jumbo jets function in the same way.

Similarly, the modeling of natural communication requires an abstract theory which
applies to human and artificial cognitive machines alike. Thereby, one naturally runs
the risk of setting the level of abstraction either too low or too high. As in the case of
flying, the crucial problem is finding the correct level of abstraction.

A level of abstraction which is too low is exemplified by closed signal systems
such as vending machines. Such machines are inappropriate as a theoretical model
because they fail to capture the diversity of natural language use, i.e., the characteristic
property that one and the same expression may be used meaningfully in different
contexts.

A level of abstraction which is too high, on the other hand, is exemplified by
naive anthropomorphic expectations. For example, a notion of ‘proper understand-
ing’ which requires that the computational system be subtly amused when scanning
Finnegans Wake is as far off the mark as a notion of ‘proper flying’ which requires
mating and breeding behavior from a jumbo jet.6

VII. ANALYZING HUMAN COGNITION

The history of mechanical flight shows how a natural process (bird flight) poses a
conceptually simple and obvious problem to science. Despite great efforts it was un-
solvable for a long time. In the end, the solution turned out to be a highly abstract
mathematical theory. In addition to being a successful foundation of mechanical flight,
this theory is able to explain the functioning of natural flight as well.

This is why the abstract theory of aero-dynamics has led to a new appreciation of
nature. Once the development of biplanes, turboprops, and jets resulted in a better the-
oretical and practical understanding of the principles of flight, interest was refocussed
again on the natural flight of animals in order to grasp their wonderful efficiency and
power. This in turn led to major improvements in artificial flight, resulting in less
noisy and more fuel-efficient airplanes.

Applied to computational linguistics, this analogy shows that our abstract and tech-
nological approach does not imply a lack of interest in the human language capacity.
On the contrary, investigating the particular properties of natural language communi-
cation by humans is meaningful only after the mechanism of natural language com-
munication has been understood in principle, modeled computationally, and proven
successful in concrete applications on massive amounts of data.

robots.
6 Though this may seem reasonable from the viewpoint of sparrows.
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VIII. INTERNAL AND EXTERNAL TRUTHS

In science we may distinguish between internal and external truths. Internal truths are
conceptual models, developed and used by scientists to explain certain phenomena,
and held true by relevant parts of society for limited periods of time. Examples are the
Ptolemaic (geocentric) view of planetary motion or Bohr’s model of the atom.

External truths are the bare facts of external reality which exist irrespective of
whether or not there are cognitive agents to appreciate them. These facts may be
measured more or less accurately, and explained using conceptual models.

Because conceptual models of science have been known to change radically in the
course of history, internal truths must be viewed as hypotheses. They are justified
mainly by the degree to which they are ably to systematically describe and explain
large amounts of real data.

Especially in the natural sciences, internal truths have improved dramatically over
the last five centuries. This is shown by an increasingly close fit between theoretical
predictions and data, as well as a theoretical consolidation exhibited in the form of
greater mathematical precision and greater functional coherence of the conceptual
(sub)models.

In contrast, contemporary linguistics is characterized by a lack of theoretical consol-
idation, as shown by the many disparate theories of language7 and the overwhelming
variety of competing theories of grammar.8 As in the natural sciences, however, there
is external truth also in linguistics. It may be approximated by completeness of em-
pirical data coverage and functional modeling.

IX. LINGUISTIC VERIFICATION

The relation between internal and external truth is established by means of a verifi-
cation method. The verification method of the natural sciences is the repeatability of
experiments. This means that, given the same initial conditions, the same measure-
ments must result again and again.

On the one hand, this method is not without problems because experimental data
may be interpreted in different ways and may thus support different, even conflicting,
hypotheses. On the other hand, the requirements of this method are so minimal that
by now no self-respecting theory of natural science can afford to reject it. Therefore

7 Examples are nativism, behaviorism, structuralism, speech act theory, model theory, as well
Givón’s (1985) iconicity, Lieb’s (1992) neostructuralism, and Halliday’s (1985) systemic
approach.

8 Known by acronyms such as TG (with its different manifestations ST, EST, REST, and
GB), LFG, GPSG, HPSG, CG, CCG, CUG, FUG, UCG, etc. These theories of grammar
concentrate mostly on an initial foundation of internal truths such as ‘psychological real-
ity,’ ‘innate knowledge,’ ‘explanatory adequacy,’ ‘universals,’ ‘principles,’ etc., based on
suitably selected examples. Cf. Sect. 9.5.
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the repeatability of experiments has managed to channel the competing forces in the
natural sciences in a constructive manner.

Another aspect of achieving scientific truth has developed in the tradition of mathe-
matical logic. This is the principle of formal consistency, as realized in the method of
axiomatization and the rule-based derivation of theorems.

Taken by itself the quasi-mechanical reconstruction of mathematical intuition in the
form of axiom systems is separate from the facts of scientific measurements. As the
logical foundation of natural science theories, however, the method of axiomatization
has proven to be a helpful complement to the principle of repeatable experiments.

In linguistics, corresponding methods of verification have sorely been missing. To
make up for this shortcoming there have been repeated attempts to remodel linguistics
into either a natural science or a branch of mathematical logic. Such attempts are
bound to fail, however, for the following reasons:

– The principle of repeatable experiments can only be applied under precisely defined
conditions suitable for measuring. The method of experiments is not suitable for
linguistics because the objects of description are conventions which have developed
over the course of centuries and exist as the intuitions (“Sprachgefühl”) of the native
speaker-hearer.

– The method of axiomatization can only be applied to theories which have consoli-
dated on a high level of abstraction, such as Newtonian mechanics, thermodynam-
ics, or the theory of relativity. In today’s linguistics, there is neither the required
consolidation of theory nor completeness of data coverage. Therefore, any attempt
at axiomatization in current linguistics is bound to be empirically vacuous.

Happily, there is no necessity to borrow from the neighboring sciences in order to
arrive at a methodological foundation of linguistics. Instead, theories of language and
grammar are to be implemented as electronic models which are tested automatically
on arbitrarily large amounts of real data as well as in real applications of spontaneous
human-computer communication. This method of verifying or falsifying linguistic
theories objectively is specific to computational linguistics and may be viewed as the
counterpart of the repeatability of experiments in the natural sciences.

X. EMPIRICAL DATA AND THEIR THEORETICAL FRAMEWORK

The methodology of computational linguistics presupposes a theory of language
which defines the goals of empirical analysis and provides the framework into which
components are to be embedded without conflict or redundancy. The development of
such a framework can be extraordinarily difficult, as witnessed again and again in the
history of science.

For example, in the beginning of astronomy scientists wrestled for centuries with
the problem of providing a functional framework to explain the measurements that
had been made of planetary motion and to make correct predictions based on such
a framework. It was comparatively recently that Copernicus (1473–1543), Kepler
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(1571–1630) and Newton (1642–1727) first succeeded with a description which was
both empirically precise and functionally simple. This, however, required the over-
throw of clusters of belief held to be true for millennia.

The revolution affected the structural hypothesis (transition from geo- to heliocen-
trism), the functional explanation (transition from crystal spheres to gravitation in
space), and the mathematical model (transition from a complicated system of epicy-
cles to the form of ellipses). Furthermore, the new system of astronomy was con-
structed at a level of abstraction where the dropping of an apple and the trajectory of
the moon are explained as instantiations of one and the same set of general principles.

In linguistics, a corresponding scientific revolution has long been overdue. Even
though the empirical data and the goals of their theoretical description are no less
clear in linguistics than in astronomy, linguistics has not achieved a comparable con-
solidation in the form of a comprehensive, verifiable, functional theory of language.9

XI. PRINCIPLES OF THE SLIM THEORY OF LANGUAGE

The analysis of natural communication should be structured in terms of methodolog-
ical, empirical, ontological, and functional principles of the most general kind. The
SLIM theory of language presented in this book is based on Surface compositional,
Linear, Internal Matching. These principles are defined as follows.

1. Surface compositional (methodological principle)
Syntactic-semantic composition assembles only concrete word forms, excluding
all operations known to increase computational complexity to exponential or un-
decidable, such as using zero-elements, identity mappings, or transformations.

2. Linear (empirical principle)
Interpretation and production of utterances are based on a strictly time-linear
derivation order.

3. Internal (ontological principle)
Interpretation and production of utterances are analyzed as cognitive procedures
located inside the speaker-hearer.

4. Matching (functional principle)
Referring with language to past, current, or future objects and events, relations,
and properties is modeled in terms of pattern matching between language mean-
ing and a context, defined as content in a speaker-hearer internal database.

These principles originate in widely different areas (methodology, ontology, etc.), but
within the SLIM theory of language they interact very closely. For example, the func-
tional principle of (4) matching can only be implemented on a computer if the overall

9 From a history of science point of view, the fragmentation of today’s linguistics resembles
the state of astronomy before Copernicus, Kepler, and Newton.
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system is handled ontologically as (3) an internal procedure of the cognitive agent.
Furthermore, the methodological principle of (1) surface compositionality and the
empirical principle of (2) time-linearity can be realized within a functional mecha-
nism of communication only if the overall theory is based on internal matching (3,4).

In addition to what its letters stand for, the acronym SLIM is motivated as a word
with a meaning like slender. This is so because detailed mathematical and computa-
tional investigations have proven SLIM to be efficient in the areas of syntax, semantics,
and pragmatics – both relatively in comparison to existing alternatives, and absolutely
in accordance with the formal principles of mathematical complexity theory.

XII. CHALLENGES AND SOLUTIONS

The SLIM theory of language is defined on a level of abstraction at which the mecha-
nism of natural language communication in humans and in suitably constructed cog-
nitive machines is explained in terms of the same principles of surface compositional,
linear, internal matching.10 This is an important precondition for unrestricted human-
computer communication in natural language. Its realization requires general and ef-
ficient solutions in the following areas.

First, SLIM must model the hearer’s understanding of natural language. This pro-
cess is realized as the automatic reading-in of propositions into a database and – most
importantly – determining the correct place for their storage and retrieval. The se-
mantic primitives are defined as the artificial or natural agent’s basic recognition and
action procedures (and not as truth conditions).

Second, SLIM must model the speaker’s production of natural language. This in-
cludes determining the content to be expressed in language, traditionally called con-
ceptualization. In its simplest form, it is realized as an autonomous navigation through
the propositions of the agent-internal database. Thereby speech production is handled
as a direct reflection (internal matching) of the navigation path in line with the motto:
speech is verbalized thought.

Third, SLIM must derive blueprints for action by means of inferences. The au-
tonomous control of the agent’s actions is driven by the principle of maintaining the
agent in a state of balance vis-à-vis a continuously changing external and internal
environment. Inferencing also plays an important role in the pragmatics of natural
language, both in the hear and the speak mode.

10 Moreover, the structural hypothesis of the SLIM theory of language is a regular, strictly
time-linear derivation order – in contrast to grammar systems based on constituent struc-
ture. The functional explanation of SLIM is designed to model the mechanism of natural
communication as a speaking robot – and not some tacit language knowledge innate in the
speaker-hearer which excludes language use (performance). The mathematical model of
SLIM is the continuation-based algorithm of LA-grammar, and not the substitution-based
algorithms of the last 50 years.
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CONCLUDING REMARK

In summary, the vision of unrestricted natural language communication between hu-
mans and machines is like the vision of motorized flight a 110 years ago: largely
solved theoretically, but not yet realized in practical systems. At this point, all it will
take to really succeed in computational linguistics is a well-directed, concentrated,
sustained effort in cooperation with robotics, artificial intelligence, and psychology.
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Theory of Language



1. Computational Analysis of Natural Language

Computational linguistics may be defined as an application of computer science to
modeling natural language communication as a software system. This includes a lin-
guistic analysis of natural language using computers. Given that the natural languages
are based on social conventions, computational linguistics is located at the historical
divide between the natural sciences and mathematics,1 on the one hand, and the hu-
manities and social sciences, on the other. In the beginnings of computer science in
the 1940s, this divide opened as the distinction between numerical and non-numerical
computation.

Numerical computation specializes in the calculation of numbers. In the fields of
physics, chemistry, astronomy, etc., it has led to a tremendous expansion of scientific
knowledge. Also many applications like banking, air travel, stock inventory, manufac-
turing, etc., depend heavily on numerical computation. Without computers and their
software, operations could not be maintained in these areas.

Non-numerical computation deals with the phenomena of perception and cogni-
tion. Despite hopeful beginnings, non-numerical computer science soon lagged be-
hind the numerical branch. In recent years, however, non-numerical computer sci-
ence has made a comeback as artificial intelligence and cognitive science. These
new, interdisciplinary fields investigate and electronically model natural information
processing.

Computational linguistics is presented here as an application of non-numerical com-
puter science to the analysis of natural language communication in the form of a talk-
ing robot. The goals of the computational model are completeness of function and of
data coverage as well as processing in real time. Central notions are external interface,
functional flow, component structure, data structure, database schema, and algorithm.
Our approach draws from traditional and theoretical linguistics, lexicography, corpus
linguistics, the psychology of language, analytic philosophy and logic, text process-
ing, and the interaction with databases in natural language.

1 In German, mathematics and the natural sciences are combined in the notion mathematisch-
naturwissenschaftliche Fächer.

R. Hausser, Foundations of Computational Linguistics,
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4 1. Computational Analysis of Natural Language

1.1 Human-Computer Communication

In fiction, there are artificial cognitive agents (robots) which a human can talk with
as with another human. This is called nonrestricted human-machine communication
in natural language. It requires modeling the functioning of natural language commu-
nication and constitutes the ultimate standard for a successful computational linguis-
tics.

Today, however, human-machine communication is still limited to highly restricted
forms. Consider, for example, the interaction between the user and a standard com-
puter, such as a PC or a workstation. The main input and output devices are the key-
board and the screen for the transfer of alphanumerical sequences.2 Therefore, com-
puters are convenient for entering, editing, and retrieving natural language, at least in
the medium of writing, thus replacing electric typewriters.

For utilizing the computers’ abilities beyond word processing, however, commands
using artificial languages must be applied. These are called programming languages,
and are especially designed for controlling the computer’s electronic operations. In
contrast to natural languages, which are flexible and rely on the seemingly obvious
circumstances of the utterance situation, common background knowledge, the content
of earlier conversations, etc., programming languages are inflexible and refer directly,
explicitly, and exclusively to operations of the machine.

For most potential users, a programming language is difficult to handle because (a)
they are not familiar with the operations of the computer, (b) the expressions of the
programming language differ from those of everyday language, and (c) the use of the
programming language requires great precision. Consider, for example, a standard
database3 which stores information about the employees of a company in the form of
records:

2 For simplicity, we are disregarding additional input and output devices, such as mouse and
loud-speakers, respectively.

It is conceivable that one could expand the notion of human-machine communication
to machines which do not provide general input-output components for language signs.
Consider, for example, the operation of a contemporary washing machine. Leaving aside
the loading of laundry and the measuring of detergent, the ‘communication’ consists in
choosing a program and a temperature and pushing the start button. The machine ‘answers’
by providing freshly cleaned laundry once the program has run its course.

Such an expanded notion of human-machine communication should be avoided, how-
ever, because it fosters misunderstandings. Machines without general input-output facili-
ties for language constitute the special case of nonlanguage human-machine communica-
tion.

3 As introductions to databases see Elmasri and Navathe (2010), Date (2003). We will return
to this topic in Chap. 22 in connection with the interpretation of natural language.
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1.1.1 EXAMPLE OF A RECORD-BASED DATABASE

The rows, named by different attributes like first name, last name, etc., are called
the fields of the record type. The lines A1, A2, etc., each constitute a record. Based
on this fixed record structure, the standard operations for the retrieval and update of
information in the database are defined.

To retrieve the name of the representative in, for example, Schwabach, the user must
type in the following commands of the programming language (here, a query language
for databases) without mistake:

1.1.2 DATABASE QUERY

Query:
select A#
where city = ‘Schwabach’

Result:
result: A3 Sanders Reinhard

The correct use of commands such as select initiates quasi-mechanical procedures
which correspond to filing and retrieving cards in a filing cabinet with many compart-
ments. Compared to the nonelectronic method, the computational system has many
practical advantages. The electronic version is faster, the adding and removing of in-
formation is simpler, and the possibilities of search are much more powerful because
various different keywords may be logically combined into a complex query.4 Is it
possible to gradually extend such an interaction with a computer to natural language?

Standard computers have been regarded as general-purpose machines for informa-
tion processing because any kind of standard program can be developed and installed
on them. From this point of view, their capabilities are restricted only by hardware
factors like available speed and memory. In another sense, the information processing
of standard computers is not general-purpose, however, because their input and output
facilities are restricted to alphanumerical sequences.

A second type of computer not subject to this limitation is autonomous5 robots. In
contradistinction to standard computers, the input and output of autonomous robots
is not restricted to alphanumerical sequences. Instead they are designed to recognize
their environment and to act in it.

4 See also Sect. 2.1.
5 Today three different generations of robots are distinguished. Most relevant for compu-

tational linguistics are robots of the third generation, which are designed as autonomous
agents. See Wloka (1992).
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Corresponding to the different technologies of standard computers and robots, there
have evolved two different branches of artificial intelligence. One branch, dubbed
classic AI by its opponents, is based on standard computers. The other branch, which
calls itself nouvelle AI,6 requires the technology of robots.

Classic AI analyzes intelligent behavior in terms of manipulating abstract symbols.
A typical example is a chess-playing program.7 It operates in isolation from the rest
of the world, using a fixed set of predefined pieces and a predefined board. The search
space for a dynamic strategy of winning in chess is astronomical. Yet the technology
of a standard computer is sufficient because the world of chess is closed.

Nouvelle AI aims at the development of autonomous agents. In contrast to systems
which respond solely to a predefined set of user commands and behave otherwise
in isolation, autonomous agents are designed to interact with their real-world envi-
ronment. Because the environment is constantly changing in unpredictable ways they
must continually keep track of it by means of sensors.

For this, nouvelle AI uses the strategy of task level decomposition (Brooks 1986).
Rather than building and updating one giant global representation to serve as the ba-
sis of automatic reasoning, nouvelle AI systems aim at handling their tasks in terms
of many interacting local procedures controlled by perception. Thereby inferencing
operates directly on the local perception data.

A third type of machine processing information – besides standard computers and
robots – is systems of virtual reality (VR).8 While a robot analyzes its environment
in order to influence it in certain ways (such as moving in it), a VR system aims at
creating an artificial environment for the user. Thereby the VR system reacts to the
movements of the user’s hand, the direction of his gaze, etc., and utilizes them in order
to create as realistic an environment as possible.

The different types of human-computer communication exemplified by standard
computers, robots, and VR systems may be compared schematically as follows:

1.1.3 THREE TYPES OF HUMAN-COMPUTER INTERACTION

6 See for example Maes (ed.) (1990).
7 Newell and Simon (1972), Reddy et al. (1973).
8 For an introduction see Wexelblat (ed.) (1993).
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The ovals represent the user who faces the respective systems in the world. The arrows
represent the interaction of the systems with their environment and the user.

A standard computer interacts solely with its user, who initiates the communication.
A robot interacts autonomously with its environment and its user. A VR system does
not interact with its environment, but rather creates an artificial environment for the
user. In robots and VR systems, communication with the user in terms of language
is optional and may be found only in advanced systems. These systems must always
have an alphanumerical ‘service channel,’ however, for the installation and upgrading
of the system software.

1.2 Language Sciences and Their Components

A speaker of English knows the meaning of a word like red. When asked to pick
the red object among a set of non-red objects, for example, a competent speaker-
hearer will be able to do it. A standard computer, on the other hand, does not ‘under-
stand’ what red means, just as a piece of paper does not understand what is written
on it.9

In the interaction with a standard computer, the understanding of natural language
is restricted largely10 to the user. For example, if a user searches in a database for a red
object, he understands the word red before it is put into – and after it is given out by –
the standard computer. But inside the standard computer, the word red is manipulated
as a sign which is uninterpreted with respect to the color denoted.

What is true for standard computers does not apply to human-computer communi-
cation in general, however. Consider for example a modern robot which is asked by
its master to get an object it has not previously encountered, for example, the new
blue and yellow book on the desk in the other room.11 If such a robot is able to spon-
taneously perform an open range of different tasks like this, it has an understanding
of language which at some level may be regarded as functionally equivalent to the
corresponding cognitive procedures in humans.

The communication with a robot may be based on either artificial or natural lan-
guage. The use of natural language is more challenging, however, and preferable in
many situations. As a first step towards achieving unrestricted human-computer com-
munication in natural language, let us consider the current state of linguistics.

9 This fact has been misunderstood to imply that a modeling of understanding in AI is im-
possible in principle. An example which is as prominent as it is mistaken is the ‘Chinese
room argument’ in Searle (1992).

10 Even a standard computer may interpret certain structural aspects of language, however,
such as the categories of the word forms.

11 Reference to objects removed in time and/or space is called displaced reference.
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In this field of research, three basic approaches to natural language analysis may
be distinguished, namely (i) traditional grammar, (ii) theoretical linguistics, and
(iii) computational linguistics. They differ in their methods, goals, and applications.

1.2.1 THREE APPROACHES TO ANALYZING NATURAL LANGUAGE

I Traditional Grammar
(a) uses the method of informal classification and description based on tradition

and experience,
(b) has the goal to collect and classify the regularities and irregularities of the

natural language in question as completely as possible, and
(c) is applied mostly in the teaching of languages (originally Latin).
While traditional grammar has long been shunted aside by theoretical linguistics, it has
been of great interest to computational linguistics because of its wealth of concrete data.
The notions of traditional grammar will be discussed in detail in Part III.

II Theoretical Linguistics
(a) uses the method of mathematical logic to describe natural languages by

means of formal rule systems intended to derive all and only the well-formed
expressions of a language (explicit hypothesis formation instead of the infor-
mal descriptions of traditional grammar),

(b) has pursued the goal of describing the ‘innate human language ability’ (com-
petence), whereby aspects of language use in communication (performance)
have been excluded, and

(c) has had rather limited applications because of its computational inefficiency
and because of its fragmentation into different schools.

Theoretical linguistics is relevant to computational linguistics in the area of formal lan-
guage analysis and mathematical complexity theory. Formal language theory will be dis-
cussed in detail in Part II.

III Computational Linguistics
(a) combines the methods of traditional grammar and theoretical linguistics with

the method of effectively verifying explicit hypotheses by implementing for-
mal grammars as efficient computer programs and testing them automatically
on realistic – i.e., large – amounts of real data,

(b) has the goal of modeling the mechanism of natural language communica-
tion – which requires a complete morphological, lexical, syntactic, semantic,
and pragmatic analysis of a given natural language within a functional frame-
work, and

(c) has applications in all instances of human-computer communication far be-
yond letter-based ‘natural language processing’ (NLP).

Despite their different methods, goals, and applications, the three variants of lan-
guage science described divide the field into the same components, namely phonol-
ogy, morphology, lexicon, syntax, semantics, and the additional field of pragmatics.
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The roles played by these components and the methods in which they are handled
scientifically differ, however, within the three approaches.

1.2.2 THE COMPONENTS OF GRAMMAR

Phonology: Science of language sounds
I In traditional linguistics, phonology is the study of historical changes as

well as synchronic alternations in the spoken surface of word forms, such as
trisyllabic laxing in English (sincere/sincerity) or final devoicing in German
(König, Könige) by informal description.

II In theoretical linguistics, phonology is concerned with the systematic orga-
nization of sounds in a language. Regarding phonology as a microcosm of
the human language ability, nativism has attempted to use the same formal
constructs such as distinctive features and constraints in phonology and in
syntax.

III In computational linguistics, the role of phonology is marginal because spo-
ken language is just one modality besides written and signed language. In-
stead, the emphasis is on analyzing natural language at a level of abstraction
which is independent of any particular medium of manifestation (modality,
e.g., sound, Sect. 1.4).

One might conceive of using phonology in peripheral cognition for automatic speech
recognition and synthesis, but the appropriate science is in fact phonetics. Phonetics
investigates the (i) articulatory, (ii) acoustic, and (iii) auditive processes of speech. In
contrast to phonology, phonetics is traditionally not considered part of the grammar and
justly so because phonetics is explicitly limited to the sensory modality of sound.

Morphology: Science of word form structure
I In traditional grammar, morphology classifies the words of a language ac-

cording to their part of speech (category) and other properties such as gen-
der, number, case, and tense, and describes the structure of word forms
in terms of inflection/agglutination, derivation, and composition. To tradi-
tional grammar, morphology has long been central, as shown by the many
paradigm tables in grammars of Latin.

II In theoretical linguistics, morphology has played a minor role. Squeezed
between phonology and syntax, morphology has been used mostly to exem-
plify principles of either or both of its neighboring components.

III In computational linguistics, morphology is used in automatic word form
recognition. Based on an online lexicon and a morphological parser, (i) each
word form is related to its base form (lemmatization) and (ii) characterized
in terms of its morpho-syntactic properties (categorization).

In computational linguistics, automatic word form recognition is fundamental. Required
for the syntactic and semantic parsing in the hear mode, the morphological analyses are
re-used for language production in the speak mode.
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Lexicon: Listing analyzed words
I In traditional grammar, the words of a language are collected and classified

in lexicography and lexicology. Lexicography deals with the principles of
coding and structuring lexical entries, and is a practically oriented border
area of natural language science. Lexicology investigates semantic relations
in the vocabulary of a language and is part of traditional philology.

II In theoretical linguistics, interest in the lexicon has steadily increased,
focusing on the distributed nature of compositionality in natural language.12

III In computational linguistics, electronic lexica combine with morphological
parsers in the task of automatic word form recognition. The goal is maximal
completeness of data coverage with fast access and low space requirements.
For building online lexica, the knowledge contained in traditional lexica has
proved to be most valuable (‘mining of dictionaries’).

With the advent of computers, the building of electronic lexica for different natural lan-
guages has been assisted by the building of larger and larger corpora in corpus linguistics
(Chaps. 13 –15).

Syntax: Science of assembling word forms into sentences
I In traditional linguistics, certain syntactic constructions such as the AcI in

Latin are described informally, using examples.
II In theoretical linguistics, syntactic analysis has concentrated on a descrip-

tion of grammatical well-formedness. The problem with analyzing well-
formedness in isolation is that any finite set of sentences may be described
by a vast multitude of different grammars. In order to select the one type of
description which turns out to be correct in the long run, theoretical linguis-
tics has vainly searched for ‘universals’ supposed to characterize the ‘innate
human language faculty.’

III In computational linguistics, the syntax must be suitable to serve as a
component in an artificial cognitive agent communicating in natural lan-
guage. This constitutes a more realistic and effective standard than intu-
itions of well-formedness alone, because the descriptive and functional ad-
equacy of the grammar system may be tested automatically on the full
range of natural language data. The parsing algorithm must be input-output-
equivalent with the mechanism of natural language and be of low mathemat-
ical complexity.

In communication, the task of syntax is the composition of meanings via the composition
of word forms surfaces.13 One aspect of this is characterizing well-formed compositions
in terms of grammatical rules. The other is to provide the basis for a simultaneous se-
mantic interpretation.

12 Bresnan (ed.) (1982), Pustejovsky (1995).
13 Sect. 19.1.



1.2 Language Sciences and Their Components 11

Semantics: Science of literal meanings
I The beginning of traditional Western grammar contributed considerably to

the theory of semantics, for example, Aristotle’s distinction between subject
and predicate. However, these contributions were passed on and developed
mostly within philosophy of language. In the teaching of traditional gram-
mar, the treatment of semantics did not reach beyond the anecdotal.

II In theoretical linguistics, semantics was initially limited to characterizing
syntactic ambiguity and paraphrase. Subsequently, truth-conditional seman-
tics has been applied to natural language: using a metalanguage, natural lan-
guage meanings are defined relative to a formal model based on set-theory.

III Computational linguistics uses a procedural semantics instead of a meta-
language-based logical semantics. The semantic primitives of a procedural
semantics are based on the elementary operations of recognition and action
by the cognitive agent (grounding). The procedural semantics is designed
to be used by the pragmatics in an explicit modeling of the information
transfer between speaker and hearer (24.2.3).

The field is naturally divided into (i) lexical semantics, describing the meaning of words,
and (ii) compositional semantics, describing the composition of meanings in accordance
with the syntax. In the hear mode, the task of semantics is a systematic conversion of the
syntactically analyzed expression into a semantic representation based on the functor-
argument and coordination.

Pragmatics: Science of using language expressions relative to a context of use
I In traditional grammar, the phenomena of pragmatics have been handled in

the separate discipline of rhetoric. This has been an obstacle to integrating
the structural analysis of language signs (grammar) and their use (pragmat-
ics) into a functional model of communication.

II In theoretical linguistics, the distinction between semantics and pragmat-
ics has evolved only haltingly. Because theoretical linguistics has not been
based on a functional model of communication, pragmatics has served
mostly as the proverbial ‘wastebasket’ (Bar-Hillel 1971, p. 405).

III In computational linguistics, the need for a systematic theory of pragmatics
became most obvious in natural language generation – as in dialog systems
or machine translation, in which the system has to decide what to say and
how to say it in a rhetorically acceptable way.

While the theory of grammar is limited to the structural analysis of the language signs,
i.e., words, word forms, and sentences in isolation, the theory of language includes (i)
the theory of grammar, (ii) the explicit definition of the context of use, and (iii) the
pragmatics describing the interaction between the language expressions and the context
of use in an utterance.

That the different approaches of traditional grammar, theoretical linguistics, and com-
putational linguistics use the same set of components to describe the phenomena of
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natural language – despite their different methods and goals – is due to the fact that the
division of phenomena underlying these components is based on different structural
aspects, namely sounds (phonology), word forms (morphology), sentences (syntax),
literal meanings (semantics), and their use in communication (pragmatics).

1.3 Methods and Applications of Computational Linguistics

Computational linguistics uses parsers for the automatic analysis of language. The
term ‘parser’ is derived from the Latin word pars meaning part, as in ‘part of speech.’
Parsing in its most basic form consists in the automatic

1. decomposition of a complex sign into its elementary components,
2. classification of the components14 via lexical lookup, and
3. composition of the classified components by means of rules in order to arrive at

an overall grammatical analysis of the complex sign.15

Methodologically, the implementation of natural language grammars as parsers is im-
portant because it allows one to test the descriptive adequacy of formal rule systems
automatically, and therefore reliably objectively, on real data. This new method of ver-
ification is as characteristic for computational linguistics as the method of repeatable
experiments is for natural science.

Practically, the parsing of natural language may be used in different applications.

1.3.1 PRACTICAL TASKS OF COMPUTATIONAL LINGUISTICS

(a) Indexing and retrieval in textual databases
Textual databases electronically store texts such as publications of daily newspa-
pers, medical journals, and court decisions. The user of such a database should be
able to find exactly those documents and passages with ease and speed which are
relevant for the specific task in question. The World Wide Web (WWW) may also
be viewed as a large, unstructured textual database, which demonstrates daily to
a growing number of users the difficulties of successfully finding the information
desired. Linguistic methods for optimizing retrieval are described in Sect. 2.2.

(b) Machine translation
Especially in the European Union, currently with 24 official languages, the poten-
tial utility of automatic or even semi-automatic translation systems is tremendous.
Different approaches to machine translation are described in Sects. 2.4 and 2.5.

(c) Automatic text production
Large companies which continually bring out new products such as motors, CD
players, farming equipment, etc., must constantly modify the associated product
descriptions and maintenance manuals. A similar situation holds for lawyers, tax

14 By assigning, for example, the part of speech.
15 Including assignment of the part of speech.
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accountants, personnel officers, etc., who must deal with large amounts of corre-
spondence in which most of the letters differ only in a few, well-defined places.
Here techniques of automatic text production can help, ranging from simple tem-
plates to highly flexible and interactive systems using sophisticated linguistic
knowledge.

(d) Automatic text checking
Applications in this area range from simple spelling checkers (based on word
form lists) via word form recognition (based on a morphological parser) to syntax
checkers based on syntactic parsers which can find errors in word order, agree-
ment, etc.

(e) Automatic content analysis
The letter-based information on this planet has been said to double every ten
years. Even in specialized fields such as natural science, law, and economics, the
constant stream of relevant new literature is so large that researchers and profes-
sionals do not nearly have enough time to read it all. A reliable automatic content
analysis in the form of brief summaries would be very useful. Automatic content
analysis is also a precondition for concept-based indexing, needed for accurate
retrieval from textual databases, as well as for adequate machine translation.

(f) Automatic tutoring
There are numerous areas of teaching in which much time is spent on drill ex-
ercises such as the more or less mechanical practicing of regular and irregular
paradigms in foreign languages. These may be done just as well on the computer,
providing the students with more fun (if they are presented as a game, for exam-
ple) and the teacher with additional time for other, more sophisticated activities
such as conversation.
Furthermore, these systems may produce automatic protocols detailing the most
frequent errors and the amount of time needed for various phases of the exercise.
This constitutes a valuable heuristics for improving the automatic tutoring system
ergonometrically. It has led to a new field of research in which the ‘electronic text
book’ of old is replaced by new teaching programs utilizing the special possibili-
ties of the electronic medium to facilitate learning in ways never explored before.

(g) Automatic dialog and information systems
These applications range from automatic information services for train schedules
via queries and storage in medical databases to automatic tax consulting.

This list is by no means complete, however, because the possible applications of com-
putational linguistics include all areas in which humans communicate with computers
and other machines of this level, today and in the future.

1.4 Electronic Medium in Recognition and Synthesis

The signs of natural language may be realized in different modalities, such as the
sounds of spoken language, the letters of handwritten or printed language, and the
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gestures of signed language. Spoken and signed languages in their original forms have
a fleeting existence, while written language is the traditional method of storing infor-
mation more permanently, e.g., on stone, clay, wood, papyrus, parchment, or paper.

A modern form of storing information is the electronic medium. It codes informa-
tion abstractly in terms of numbers which are represented magnetically. In contrast
to the traditional means of storage, the electronic medium has the advantage of great
flexibility: the data may be copied, edited, sorted, reformatted, and transferred at will.

The electronic medium may represent language in a modality-independent or a
modality-dependent form. The modality-independent form represents language as ab-
stract types, coded digitally as electronic sign sequences, e.g., in ASCII16 or Unicode.
The modality-dependent form reproduces accidental properties of tokens in a certain
modality, such as a tape recording of spoken language, a bitmap of written language,
or a video recording of signed language. As types,17 the signs may be recognized un-
ambiguously by suitable machines, copied without loss of information, and realized
as token surfaces in any imaginable variant in any of the language modalities.

In communication, there is a constant transfer between modality-dependent and
modality-independent representations. During recognition in the hear mode, modality-
dependent tokens are mapped into the modality-independent types (d⇒i transfer). The
technology for written language is called optical character recognition (OCR); for
spoken language, it is called speech recognition.

During production in the speak mode, modality-independent types are mapped into
modality-dependent tokens (i⇒d transfer). The technology of mapping types of lan-
guage signs into spoken language is called speech synthesis and presents the challenge
of achieving the appropriate realization for a wide range of different utterance situa-
tions; for print, the analogous mapping is into the appropriate fonts.

Especially, automatic speech recognition has been the subject of an intensive world-
wide research effort. There are many users and many circumstances of use for which
input to a computer based on spoken language would be considerably more user
friendly than typing on a keyboard. The projects range from an “electronic secre-
tary” capable of taking dictation to telephone-based automatic information systems
(e.g., for train schedules) to Verbmobil.18

The quality of automatic speech recognition should be at least equal to that of an
average human hearer. This leads to the following desiderata:

16 ASCII stands for American Standard Code for Information Interchange.
17 Each instance of such a type is coded identically to any other instance of the same type. For

further discussion of the type-token distinction, see Sect. 3.3.
18 Verbmobil (Wahlster 1993) was designed to allow speakers of German or Japanese with

only a passive knowledge of English to arrange meetings. By translating German or
Japanese input into English, Verbmobil allows the hearer to understand the output of the
system, and the speaker to check whether the system has translated as intended (Sect. 2.5).
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1.4.1 DESIDERATA OF AUTOMATIC SPEECH RECOGNITION

(a) Speaker independence
The system should understand the speech of an open range of speakers with vary-
ing dialects, pitch, etc. – without the need for an initial learning phase to adapt
the system to one particular user.

(b) Continuous speech
The system should handle continuous speech at different speeds – without the
need for unnatural pauses between individual word forms.

(c) Domain independence
The system should understand spoken language independently of the subject mat-
ter – without the need to tell the system in advance which vocabulary is to be
expected and which is not.

(d) Realistic vocabulary
The system should recognize at least as many word forms as an average human.

(e) Robustness
The system should recover gracefully from interruptions, contractions, and slur-
ring of spoken language, and should be able to infer the word forms intended.

Today’s continuous speech systems can achieve speaker independence only at the
price of domain dependence. The prior restriction to a certain domain – for example,
train schedules, or when and where to meet – facilitates recognition by drastically
reducing the number of hypotheses about the word forms underlying a given sound
pattern.19

The vocabulary of speaker-independent continuous speech recognition systems is
still limited to no more than 1 000 word forms. An average speaker, however, uses
about 10 000 words – which in English corresponds to about 40 000 word forms.
A speaker’s passive vocabulary is about three to four times as large. Therefore a
speech recognition system for English would have to recognize 120 000 word forms in
order to be in the same class as an average speaker.20 Accordingly, Zue et al. (1995)21

estimate that “It will be many years before unlimited vocabulary, speaker-independent
continuous dictation capability is realized.”

Speech recognition will be fully successful only if the technological side is supplied
continuously with small bits of highly specific data from large stores of domain and

19 Utilizing domain knowledge is crucial for inferring the most probable word sequence from
the acoustic signal in both human and artificial speech recognition. The point is that the sys-
tem should be capable to determine the current domain automatically, instead of designing
the system for one specific domain only or requiring the user to preselect a domain.

20 Based on (i) a training phase to adapt to a particular user and (ii) pauses between each word
form, the IBM-VoiceType system can recognize up to 22 000 different word forms.

21 In Cole (ed.) (1998), p. 9.
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language knowledge. These bits are needed only momentarily and must be provided
very fast in order for the system to work in real time.

Therefore, the crucial question for designing truly adequate speech recognition is:

How should the domain and language knowledge best be organized?

The answer is obvious:

Within a functional theory of language which is mathematically and compu-
tationally efficient.

The better natural communication is modeled on the computer, the more effectively
speech recognition can be supplied with the necessary bits of information. Conversely,
the better the functioning of speech recognition, the easier the d⇒i transfer and thus
the supply of knowledge needed for understanding during human-computer dialog.

1.5 Second Gutenberg Revolution

The first Gutenberg revolution22 was based on the technological innovation of printing
with movable letters. It made it possible to reproduce books inexpensively and in
great numbers, making a wealth of information available to a broader public for the
first time. This led to a rapid expansion of knowledge which in turn was stored and
multiplied in the form of even more books.

Due to quickly expanding amounts of information being made freely available, it
became increasingly difficult to find the relevant information for a given purpose.
Today the accumulated wealth of printed information far exceeds the capacity of a
human life span, even in narrowly defined subdomains of scientific research.

This is to be remedied by what has been called the second Gutenberg revolution
(e.g., Howell (ed.) 1990), based on the technological innovation of the electronic
medium. The automatic processing of natural language on the computer facilitates
access to specific pieces of information in such a way that huge amounts of text can
be searched quickly and comfortably, producing accurate and complete results.

The second Gutenberg revolution is supported by the fact that today’s publications
originate primarily in the electronic medium, making a d⇒i modality transfer from
the conventional print media unnecessary. When texts are typed directly into the com-

22 Named after Johannes Gutenberg, 1400?–1468?, who invented printing with movable type
in Europe. This technique had been discovered earlier in China by Bi Sheng between 1041
and 1048 (Chen 1988, p. 121) and in Korea, probably around 1234 (Kim 1981; Park 1987).

One reason why the earlier discovery of this technique did not prevail is the great number
of Chinese characters, which are not as suitable for printing as the roughly 40 characters
of the Latin alphabet (the Korean alphabet Hangul was designed much later, in 1446). The
other is that the early printing in Asia was done by hand only, whereas Gutenberg – pre-
sumably inspired by the wine presses of his time – integrated the printing blocks into a
mechanism which facilitated and sped up the printing of pages, and which could be com-
bined with an engine to run automatically.
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puter, the traditional print medium becomes a secondary medium into which the elec-
tronic versions are converted only on demand.

Even texts which have long existed in the traditional print medium are nowadays
being transferred into the electronic medium in order to make them susceptible to the
methods of electronic processing. Examples are the complete texts of classical Greek
and Latin, the complete Shakespeare, and the Encyclopædia Britannica, which are
now available electronically.

Compared to the printed version of a multi-volume edition, the electronic medium
has the advantage of compactness, ease of use, and speed. Instead of one having to
haul several volumes from the shelf and leaf through hundreds of pages by hand in
order to find a particular passage, the electronic version merely requires typing in a
few keywords.

Given suitable software, it is also possible to search using combinations of words,
enabling the retrieval of all passages in which, for example, painter, Venice, and 16th

century occur within a certain interval of text. These methods of search can be life-
saving, for example, when a textual database is used for diagnosing a rare disease, or
for choosing a particular medication.

Another advantage of the electronic medium is the editing, formatting, and copying
of text. In the old days, newspaper articles were put together with mechanical typeset-
ting machines. Information coming in from a wire service had to be typeset from the
ticker tape letter by letter. To make room for some late-breaking piece of news, the
printing plate had to be rearranged by hand.

Today the production of newspapers is done primarily online in soft copy. Contribu-
tions by wire services are not delivered on paper, but by email. The form and contents
of the online newspaper can be freely reformatted, copied, and edited, and any of these
versions can be printed as hard copies without additional work.

The form of a newspaper article, like any text, is based on such structural features as
title, name of author, date, section headers, sections, paragraphs, etc. In the electronic
medium, this textual structure is coded abstractly by means of control symbols.

1.5.1 NEWSPAPER TEXT WITH CONTROL SYMBOLS

<HTML>
<HEAD>
<TITLE>9/4/95 COVER: Siberia, the Tortured Land</TITLE>
</HEAD>
<BODY>
<!-- #include "header.html" -->
<P>TIME Magazine</P>
<P>September 4, 1995 Volume 146, No. 10</P>
<HR>
Return to <A href="../../../../../time/magazine/domestic/toc/
950904.toc.html">Contents page</A>
<HR>
<BR>
<!-- end include -->
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<H3>COVER STORY</H3>
<H2>THE TORTURED LAND</H2>
<H3>An epic landscape steeped in tragedy, Siberia suffered
grievously under communism. Now the world’s capitalists covet
its vast riches </H3>
<P><EM>BY <A href="../../../../../time/bios/eugenelinden.html">
EUGENE LINDEN</A>/YAKUTSK</EM>
<P>Siberia has come to mean a land of exile, and the place
easily fulfills its reputation as a metaphor for death and
deprivation. Even at the peak of midsummer, a soul-chilling
fog blows in off the Arctic Ocean and across the mossy tundra,
muting the midnight sun above the ghostly remains of a
slave-labor camp. The mist settles like a shroud over broken
grave markers and bits of wooden barracks siding bleached
as gray as the bones of the dead that still protrude through
the earth in places. Throughout Siberia, more than 20 million
perished in Stalin’s Gulag. ...

To be positioned here, the text was copied electronically from a publication of TIME
magazine available on the Internet. The example contains control symbols of the form
<...>, which specify the formatting of the text in print or on the screen. For exam-
ple, <P>September 4, 1995 Volume 146, No. 10</P> is to be treated
in print as a paragraph, and <H2>THE TORTURED LAND</H2> as a header.

At first, different print shops used their own conventions to mark the formatting
instructions, for which reason the control symbols had to be readjusted each time a
text was moved to another typesetting system. To avoid this needless complication,
the International Standards Organization (ISO) developed the SGML standard.

1.5.2 SGML: Standard Generalized Markup Language

A family of ISO standards for labeling electronic versions of text, enabling both
sender and receiver of the text to identify its structure (e.g., title, author, header,
paragraph, etc.)

Dictionary of Computing, p. 416 (Illingworth et al. (eds.) 1990)

Meanwhile, the SGML language,23 exemplified in 1.5.1, has been replaced by an eas-
ier to use subset, called XML (for eXtensible Markup Language).24 Use of a common
markup language has the advantage that formatting instructions can be automatically
interpreted by other users.

In addition to the standardized coding of textual building blocks such as header, sub-
title, author, date, table of contents, paragraph, etc., there is the question of how differ-
ent types of text, such as articles, novels, theater plays, and dictionaries, should best
be constructed from these building blocks. For example, the textual building blocks
of a theater play, i.e., the acts, the scenes, the dialog parts of different roles, and the
stage descriptions, can all be coded in XML. Yet the general text structure of a play

23 See Goldfarb (1990), van Herwijnen (1990).
24 See St. Laurent (1998), Bray et al. (eds.) (2008), Salminen and Tompa (2011).
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as compared to a newspaper article or a dictionary entry goes beyond the definition of
the individual building blocks.

In order to standardize the structure of different types of texts, the International Stan-
dards Organization (ISO) began in 1987 to develop the TEI Guidelines. TEI stands
for Text Encoding Initiative and defines a DTD (Document Type Definition) for the
markup of different types of text in XML.25

XML and TEI specify the markup at the most abstract level insofar as they define
the text structure and its building blocks in terms of their function (e.g., header), and
not in terms of how this function is to be represented in print (e.g., bold face, 12 pt.).
For this reason, texts conforming to the XML and TEI standards may be realized in
any print style of choice without additional work.

An intermediate level of abstraction is represented by the formatting systems devel-
oped as programming languages for typesetting only a few years earlier. Widely used
in academic circles are TEX, developed by Knuth (1984), and its macro package LATEX
(Lamport 1986). Since they were first introduced in 1984 they have been used by sci-
entists for preparing camera-ready manuscripts of research papers and books.

At the lowest level of abstraction are menu-based text processing systems on PCs,
such as MS Office Word. They are initially easy to learn, but their control is compar-
atively limited, and they may have difficulty handling longer documents. Also, trans-
ferring text from one PC text processing system to another is difficult to impossible.

In summary, XML and TEI focus on defining the abstract structure of the text, TEX
and LATEX focus on control of the print, and PC systems focus on the ease and comfort
of the user. Thereby the higher level of abstraction, e.g., XML, can always be mapped
onto a lower level, e.g., LATEX. The inverse direction, on the other hand, is not generally
possible because the lower level control symbols have no unambiguous interpretation
in terms of text structure.

XML/TEI and TEX/LATEX have in common that their control symbols are placed
into the text’s source code (as shown in 1.5.1) by hand; then they are interpreted by a
program producing the corresponding print. PC systems, on the other hand, are based
on WYSIWYG (what you see is what you get), i.e., the look of the print is manipulated
by the user on the screen. In this process, the software automatically floods the text’s
source code with cryptic control symbols.

For authors, the production of camera-ready manuscripts on the computer has many
practical advantages. With this method, called desktop publishing (DTP), the author
can shape the form of the publication directly and there are no galley proofs to be
corrected. Also, the time between text production and publication may be shortened,
and the publication is much less expensive than with conventional typesetting.

For linguists, online texts have the advantage that they can be analyzed electroni-
cally. With most current publications originating in the electronic medium it is only

25 A description of TEI Lite and bibliographical references may be found in Burnard and
Sperberg-McQueen (1995).
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a question of access and copyright to obtain arbitrarily large amounts of online text
such as newspapers, novels, or scientific publications in various domains.

One linguistic task is to select from the vast amounts of electronically stored text a
representative and balanced sample of the language (corpus construction, Chap. 15).
Another is to analyze the texts in terms of their lexical, morphological, syntactic, and
semantic properties. In either case, linguists are not interested in a text because of its
content or layout, but as a genuine (“real”) instance of natural language at a certain
time and place – in contrast to the invented examples of “armchair linguistics.”

There are many possibilities for processing an online text for linguistic analysis. For
example, using some simple commands one may easily remove all control symbols
from the text in 1.5.1 and then transform it into an alphabetical list of word forms.

1.5.3 ALPHABETICAL LIST OF WORD FORMS

10 in STORY
146 in suffered
1995 in sun
20 its than
4 its that
a LAND The
a land the
a landscape the
a like the
a LINDEN the
above Magazine the
across markers the
and mean the
and metaphor the
and midnight the
and midsummer the
Arctic million through
as mist Throughout
as more to
barracks mossy to
bits muting TORTURED
bleached No tragedy
blows Now tundra
bones of vast
broken of Volume
camp of wooden
capitalists of world’s
come of An
communism off as
Contents page at
covet peak COVER
dead perished EUGENE
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death place fulfills
deprivation places ghostly
earth protrude in
easily remains Ocean
epic reputation over
Even riches Return
exile settles September
fog shroud Siberia
for Siberia Stalin’s
grave Siberia THE
gray siding TIME
grievously slave-labor under
Gulag soul-chilling /YAKUTSK
has steeped

In this list, word forms are represented as often as they occur in the text, thus providing
the basis for word form statistics. It would be just as easy, however, to create a unique
list in which each word form is listed only once, as for lexical work. Another approach
to analyzing an online text for linguistic purposes is measuring the co-occurrence of
word forms next to each other, based on bigrams and trigrams.

These methods all have in common that they are letter-based.26 They operate with
the abstract, digitally coded signs in the electronic medium, whereby word forms are
no more than sequences of letters between spaces. Compared to nonelectronic meth-
ods – such as typewriting, typesetting, card indexing, searching by leafing and/or read-
ing through documents, or building alphabetical word lists by hand – the electronic
computation on the basis of letters is fast, precise, and easy to use.

At the same time, the letter-based method is limited inasmuch as any grammatical
analysis is by definition outside of its domain. Letter-based technology and grammat-
ical analysis may work closely together, however. By combining the already powerful
letter-based technology with the concepts and structures of a functional, mathemati-
cally efficient, and computationally suitable theory of language, natural language pro-
cessing (NLP) may be greatly improved.

26 In the sense of alphanumeric, i.e., including numbers and punctuation signs.
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Exercises

Section 1.1
1. Describe three different variants of human-computer interaction.
2. In what sense is the interaction with a contemporary washing machine a spe-

cial case of human-machine communication, and why is it not in the domain of
computational linguistics?

3. Why is it difficult to get accustomed to programming languages, as in the inter-
action with a database?

4. Why is a standard computer a universal machine for processing information, yet
at the same time of limited cognitive capacity in comparison to a robot?

5. Describe two different branches of artificial intelligence.
6. What is the difference in principle between a robot and a VR system?

Section 1.2
1. Why is the development of talking robots of special interest to the theoretical

development of computational linguistics?
2. Compare three different approaches to language analysis and describe their dif-

ferent methods, goals, and applications.
3. What are the components of grammar and what are their respective functions?
4. Why do different approaches to language analysis use the same kinds of compo-

nents, dividing the phenomena in the same way?

Section 1.3
1. Classify computational linguistics as a science. Explain the notions numerical,

non-numerical, cognitive science, and artificial intelligence.
2. What sciences are integrated into computational linguistics in an interdisci-

plinary way?
3. What are the methodological consequences of programming in computational

linguistics?
4. Describe the practical applications of computational linguistics.

Section 1.4
1. What are the different modalities in which the expressions of natural language

can be realized?
2. Explain the distinction between a modality-dependent and a modality-independ-

ent storage of information.
3. Does communication require constant d⇒i and i⇒d transfers only in artificial

cognitive agents or also in humans?
4. Explain the notion OCR software.
5. What are the desiderata of automatic speech recognition?
6. What will be required for automatic speech recognition to eventually become

successful?
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Section 1.5
1. What is the second Gutenberg revolution and how does it differ from the first?
2. Explain the technological advantages of the electronic medium.
3. Explain the terms SGML, XML, DTD, and TEI.
4. What is the role of computers in DTP?
5. Explain the notions hard copy and soft copy.
6. What are the possibilities and the limitations of a purely technology-based natu-

ral language processing?



2. Smart vs. Solid Solutions

For computational applications, two approaches may be generally distinguished:
smart solutions and solid solutions. Smart solutions use special properties of the par-
ticular application to obtain a sufficient result at a minimum of cost. Solid solutions,
in contrast, analyze the application at a more general level such that they can be used
for a whole class of applications. By maintaining and extending a solid solution, it
may be re-used again and again, thus saving time and money in the long run.

For computational linguistics, the most general solid solution is a general theory of
how natural language communication works. To give an idea of the kinds of applica-
tions such a solid solution may be used for, Sect. 2.1 explains the structures underlying
the use of textual databases. Section 2.2 shows how linguistic methods can improve
the retrieval from textual databases. Section 2.3 shows how different applications re-
quire linguistic knowledge to different degrees in order to be practically useful. Sec-
tion 2.4 explains the notion of language pairs in machine translation and describes
the direct and the transfer approaches. A third approach to machine translation, the
interlingua approach, as well as computer-based systems for aiding translation, are
described in Sect. 2.5.

2.1 Indexing and Retrieval in Textual Databases

A textual database is an arbitrary collection of electronically stored texts. In contrast
to a classic, record-based database like the one in 1.1.1, no structural restrictions apply
to a textual database. Thus, the individual texts may be arranged, for example, in the
temporal order of their arrival or according to their subject matter, the name of their
author(s), their length, or no principle at all.

The search for a certain text or text passage is based on the standard, letter-based
indexing of the textual database.

2.1.1 STANDARD INDEXING OF A TEXTUAL DATABASE (INVERTED FILE)

The indexing of a textual database is based on a table, called inverted file,
which specifies for each letter all the positions (place numbers) where it oc-
curs in the storage medium of the database.

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_2, © Springer-Verlag Berlin Heidelberg 2014
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The electronic index (inverted file) of a textual database functions in many ways like
a traditional library catalog of alphabetically ordered file cards.

Each traditional file card contains a keyword, e.g., the name of the author, and the
associated address, e.g., the shelf where the book of the author may be found. While
the file cards are ordered alphabetically according to their respective keywords, the
choice of the addresses is initially free. Once a given book has been assigned a certain
address and this address has been noted in the catalog, however, it is bound to this
address.

In an unordered library without a catalog, the search for a certain book requires
looking through the shelves (linear search). In the worst case, the book in question
happens to be on the last of them. A library catalog speeds up such searching because
it replaces a linear search by specifying the exact address(es) of the physical location.
Thus, a book may be found using the alphabetical order of the file cards, irrespective
of how the actual locations of the books are arranged.

The electronic index of a textual database uses the letters of the alphabet like the
keywords of a library catalog, specifying for each letter all its positions (addresses)
in the storage medium. The occurrences of a certain word form, e.g., sale, is then
computed from the intersection of the position sets of s, a, l, and e. The electronic
index is built up automatically when the texts are read into the database, whereby the
size of the index is roughly equal to that of the textual database itself.

The search for relevant texts or passages in the database is guided by the user on
the basis of words he considers characteristic of the subject matter at hand. Consider
for example a lawyer interested in legal decisions dealing with warranties in used
car sales. After accessing an electronic database in which all federal court decisions
since 1960 are stored, he specifies the words warranty, sale, and used car. After a few
seconds the database returns a list of all the texts in which these words occur. When
the user clicks on a title in the list the corresponding text appears on the screen.

The user might well find that not all texts in the query result are actually relevant for
the purpose at hand. It is much easier, however, to look through the texts of the query
result than to look through the entire database.

Also, the database might still contain texts which happen to be relevant to the subject
matter, yet are not included in the query result. Such texts, however, would have to
deal with the subject matter without mentioning the query words, which is unlikely.

The use of an electronic index has the following advantages over a card index:

2.1.2 ADVANTAGES OF AN ELECTRONIC INDEX

(a) Power of search
Because the electronic index of a textual database uses the letters of the alphabet
as its keys, the database may be searched for any sequence of letters, whereas
the keys of a conventional catalogue are limited to certain kinds of words, such
as the name of the author.
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(b) Flexibility
(i) General specification of patterns

An electronic index makes it possible to search for patterns. For example,
the pattern1 in.*i..tion matches all word forms of which the first two letters
are in, the seventh letter from the end is i and the last four letters are tion, as
in inhibition and inclination.

(ii) Combination of patterns
The electronic index allows to search for the combination of several word
forms, whereby a maximal distance for their co-occurrence may be speci-
fied.

Though it is theoretically possible to create a conventional card index for the po-
sitions of each letter of the books in a library, this would not be practical. There-
fore searching with patterns or the combination of keywords and/or patterns is
not technically feasible with a conventional card index.

(c) Automatic creation of the index structure
The electronic index of a textual database is generated automatically during the
reading-in of texts into the database. In a conventional card index, on the other
hand, each new keyword requires making a new card by hand.

(d) Ease, speed, and reliability
While an electronic search is done automatically in milliseconds, is error free,
and is complete, a conventional search using a card index requires human labor,
is susceptible to errors, and may take anywhere from minutes to hours or days.
The advantages of electronic search apply to both the query (input of the search
words) and the retrieval (output of the corresponding texts or passages).

(i) Query
An electronic database is queried by typing the search patterns on the com-
puter, while the use of a card index requires picking out the relevant cards
by hand.

(ii) Retrieval
In an electronic database, the retrieved texts or passages are displayed on
the screen automatically, while use of a conventional card index requires
going to the library shelves to get the books.

The quality of a query result is measured in terms of recall and precision.2

2.1.3 DEFINITION OF RECALL AND PRECISION

Recall measures the percentage of relevant texts retrieved as compared to the
total of relevant texts contained in the database.

1 A widely used notation for specifying patterns of letter sequences are regular expressions
(RegEx) as implemented in Unix.

2 See Salton (1989), p. 248.
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For example: a database of several million pieces of text happens to con-
tain 100 texts which are relevant to a given question. If the query returns 75
texts, 50 of which are relevant to the user and 25 irrelevant, then the recall is
50 : 100 = 50 %.

Precision measures the percentage of relevant texts contained in the result of
a query.
For example: a query results in 75 texts of which 50 turn out to be relevant to
the user. Then the precision is 50 : 75 = 66.6 %.

Experience has shown that recall and precision are not independent of each other,
but inversely proportional: a highly specific query will result in low recall with high
precision, while a loosely formulated query will result in high recall with low preci-
sion.

High recall has the advantage of retrieving a large percentage of the relevant texts
from the database. Because of the concomitant low precision, however, the user has
to work through a huge amount of material most of which turns out to be irrelevant.

High precision, on the other hand, produces a return most of which is relevant for
the user. Because of the concomitant low recall, however, the user has to accept the
likelihood that a large percentage of relevant texts remain undiscovered.

Measuring recall is difficult in large databases. It presupposes exact knowledge of
all the texts or passages which happen to be relevant for any given query. To measure
the recall for a given query, one would have to search the entire database manually
in order to objectively determine the complete set of documents relevant to the user’s
question and to compare it with the automatic query result.

Measuring precision, on the other hand, is easy, because the number of docu-
ments returned by the system in response to a query is small compared to the overall
database. The user need only look through the documents in the query result in order
to find out which of them are relevant.

In a famous and controversial study, Blair and Maron (1985) attempted to measure
the average recall of a commercial database system called STAIRS.3 For this purpose
they cooperated with a large law firm whose electronic data comprised 40 000 docu-
ments, amounting to a total of 350 000 pages. Because of this substantial, but at the
same time manageable, size of the data it was possible to roughly determine the real
number of relevant texts for 51 queries with the assistance of the employees.

Prior to the study, the employees subjectively estimated an electronic recall of 75 %.
The nonelectronic verification, however, determined an average recall of only 20 %,
with a standard deviation of 15.9 %, and an average precision of 79.0 %, with a stan-
dard deviation of 22.2 %.

3 STAIRS is an acronym for Storage and Information Retrieval System, a software product
developed by IBM and distributed from 1973 to 1994.
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2.2 Using Grammatical Knowledge

The reason for the surprisingly low recall of only 20 % on average is that STAIRS

uses only technological, i.e., letter-based, methods. Using grammatical knowledge
in addition, recall could be improved considerably. Textual phenomena which resist
a technological treatment, but are suitable for a linguistic solution, are listed below
under the heading of the associated grammatical component.

2.2.1 PHENOMENA REQUIRING LINGUISTIC SOLUTIONS

(a) Morphology
A letter-based search does not recognize words. For example, the search for sell
will overlook relevant forms like sold.
A possible remedy would be a program for word form recognition which au-
tomatically assigns to each word form the corresponding base form (lemmati-
zation). By systematically associating each word form with its base form, all
variants of a search word in the database can be found. A program of automatic
word form recognition would be superior to the customary method of trunca-
tion – especially in languages with a morphology richer than that of English.

(b) Lexicon
A letter-based search does not take semantic relations between words into ac-
count. For example, the search for car would ignore relevant occurrences such as
convertible, pickup truck, station wagon, etc.
A lexical structure which automatically specifies for each word the set of equiv-
alent terms (synonyms), of the superclass (hypernyms), and of the instantiations
(hyponyms) can help to overcome this weakness, especially when the domain is
taken into account.4

(c) Syntax
A letter-based search does not take syntactic structures into account. Thus, the
system does not distinguish between, for example, teenagers sold used cars and
teenagers were sold used cars.
A possible remedy would be a syntactic parser which recognizes different gram-
matical relations between, for example, the subject and the object. Such a parser,
which presupposes automatic word form recognition, would be superior to the
currently used search for words within specified maximal distances.

4 Some database systems already use thesauri, though with mixed results. Commercially
available lexica are in fact likely to lower precision without improving recall. For example,
in Webster’s New Collegiate Dictionary, the word car is related to vehicle, carriage, cart,
chariot, railroad car, streetcar, automobile, cage of an elevator, and part of an airship or
balloon. With the exception of automobile and perhaps vehicle, all of these would only
lower precision without improving recall.
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(d) Semantics
A letter-based search does not recognize semantic relations such as negation. For
example, the system would not be able to distinguish between selling cars and
selling no cars. Also, equivalent descriptions of the same facts, such as A sold x
to B and B bought x from A, could not be recognized.
Based on a syntactic parser and a suitable lexicon, the semantic interpretation
of a textual database could analyze these distinctions and relations, helping to
improve recall and precision.

(e) Pragmatics
According to Blair and Maron (1985), a major reason for poor recall was the
frequent use of context-dependent formulations such as concerning our last letter,
following our recent discussion, as well as nonspecific words such as problem,
situation, or occurrence.
The treatment of these frequent phenomena requires a complete theoretical un-
derstanding of natural language pragmatics. For example, the system will have to
be able to infer that, for example, seventeen-year-old bought battered convertible
is relevant to the query used car sales to teenagers.

In order to improve recall and precision, linguistic knowledge may be applied in
various different places in the database structure. The main alternatives are whether
improvements in the search should be based on preprocessing the query, refining the
index, and/or postprocessing the result. Further alternatives are an automatic or an
interactive refinement of the query and/or the result, as described below.

2.2.2 LINGUISTIC METHODS OF OPTIMIZATION

A Preprocessing the query
1. Automatic query expansion

(i) The search words in the query are automatically ‘exploded’ into their
full inflectional paradigm and the inflectional forms are added to the
query.

(ii) Via a thesaurus the search words are related to all synonyms, hyper-
nyms, and hyponyms. These are included in the query – possibly with
all their inflectional variants.

(iii) The syntactic structure of the query, e.g., A sold x to B, is transformed
automatically into equivalent versions, e.g., B was sold x by A, x was
sold to B by A, etc., to be used in the query.

2. Interactive query improvement
The automatic expansion of the query may result in an uneconomic widen-
ing of the search and considerably lower precision. Therefore, prior to the
search, the result of a query expansion is presented to the user to eliminate
useless aspects of the automatic expansion and to improve the formulation
of the query.
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B Improving the indexing
1. Letter-based indexing

This is the basic technology of search, allowing one to retrieve the positions
of each letter and each letter sequence in the database.

2. Morphologically based indexing
A morphological analyzer is applied during the reading in of texts, relating
each word form to its base form. This information is coded into an index
which for any given word (base form) allows one to find the associated
word forms in the text.

3. Syntactically based indexing
A syntactic parser is applied during the reading in of texts, eliminating mor-
phological ambiguities and categorizing phrases. This information is coded
into an index on the basis of which all occurrences of a given syntactic con-
struction may be found.

4. Concept-based indexing
The texts are analyzed semantically and pragmatically, whereby the soft-
ware eliminates syntactic and semantic ambiguities and infers special uses
characteristic of the domain. This information is coded into an index on the
basis of which all occurrences of a given concept may be found.

C Postquery processing
1. The low precision resulting from a nonspecific formulation of the query may

be countered by an automatic processing of the data retrieved. Because there
is only a small amount of raw data retrieved, as compared to the database
as a whole, it may be parsed after the query and checked for their content.
Then only those texts are displayed which are relevant according to this
postquery analysis.

The ultimate goal of indexing textual databases is a concept-based retrieval founded
on a complete morphological, syntactic, semantic, and pragmatic analysis of the texts.

2.3 Smart vs. Solid Solutions in Computational Linguistics

Which of the alternatives mentioned above is actually chosen in the design of a tex-
tual database depends on the amount of data to be handled, the available memory
and speed of the hardware, the users’ requirements regarding recall, precision, and
speed of the search, and the designer’s preferences and abilities. At the same time, the
alternatives of 2.2.2 are not independent from each other.

For example, if an improvement of recall and precision is to be achieved via an
automatic processing of the query, one can use a simple indexing. More specifically,
if the processing of the query explodes the search words into their full inflectional
paradigm for use in the search, a morphological index of the database would be su-
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perfluous. Conversely, if there is a morphological index, there would be no need for
exploding the search words.

Similarly, the automatic expansion of queries may be relatively carefree if it is to
be scrutinized by the user prior to search. If no interactive fine-tuning of queries is
provided, on the other hand, the automatic expansion should be handled restrictively
in order to avoid a drastic lowering of precision.

Finally, the indexing of texts may be comparatively simple if the results of each
query are automatically analyzed and reduced to the most relevant cases before being
output to the user. Conversely, a very powerful index method, such as concept-based
indexing, would produce results with such high precision that there would be no need
for an automatic postprocessing of results.

The different degrees of using linguistic theory for handling the retrieval from tex-
tual databases illustrate the choice between smart versus solid solutions. Further ex-
amples are the following:

2.3.1 SMART SOLUTIONS IN COMPUTATIONAL LINGUISTICS

Smart solutions avoid difficult, costly, or theoretically unsolved aspects of
natural communication, as in
(a) Weizenbaum’s Eliza program, which appears to understand natural lan-

guage, but doesn’t (cf. the Introduction in the Frontmatter)
(b) direct and transfer approaches in machine translation, which avoid un-

derstanding the source text (Sects. 2.4 and 2.5), and
(c) finite state technology (Sect. 13.5) and statistics (Sect. 15.5) for tagging

and probabilistic parsing.5

Initially, smart solutions seem cheaper and quicker, but they are costly to maintain and
their accuracy cannot be substantially improved. The alternative is solid solutions:

2.3.2 SOLID SOLUTIONS IN COMPUTATIONAL LINGUISTICS

Solid solutions aim at a complete theoretical and practical understanding of
natural language communication. Applications are based on ready-made off-
the-shelf components such as
(a) online lexica,
(b) rule-based grammars for the syntactic-semantic analysis of word forms

and sentences,

5 These methods may seem impressive because of the vast number of toys and tools assem-
bled in the course of many decades (Jurafsky and Martin 2000). But they do not provide
an answer to the question of how natural language communication works. Imagine that
the Martians came to Earth and modeled cars statistically: they would never run. What is
needed instead is a functional reconstruction of the engine, the transmission, the steering
mechanism, etc., i.e., a solid solution.
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(c) parsers and generators for running the grammars in the analysis and pro-
duction of free text, and

(d) reference and monitor corpora for different domains, which provide a
systematic, standardized account of the current state of the language.

Solid solution components are an application-independent long-term investment. Due
to their systematic theoretical structure they are easy to maintain, can be improved
continuously, and may be used again and again in different applications.

Whether a given task is suitable for a smart or a solid solution depends to a great
extent on whether the application requires a perfect result or whether a partial answer
is sufficient. For example, a user working with a giant textual database will be greatly
helped by a recall of 70 %, while a machine translation system with 70 % accuracy
will be of little practical use.

This is because a 70 % recall in a giant database is much more than a user could
ever hope to achieve with human effort alone. Also, the user never knows which texts
the system did not retrieve.

In translation, in contrast, the deficits of an automatic system with 70 % accuracy
are painfully obvious to the user. Furthermore there is an alternative available, namely
professional human translators. Because of the costly and time-consuming human
correction required by today’s machine translation, the user is faced daily with the
question of whether or not the machine translation system should be thrown out alto-
gether in order to rely on human work completely.

Another, more practical factor in the choice between a smart and a solid solution in
computational linguistics is the off-the-shelf availability of grammatical components
for the natural language in question. Such components of grammar, e.g., automatic
word form recognition, syntactic parsing, etc., must be developed independently of
any specific applications as part of basic research – solely in accordance with the
general criteria of (i) their functional role as components in the mechanism of natural
communication, (ii) completeness of data coverage, and (iii) efficiency.

Modular subsystems fulfilling these criteria can be used in practical applications
without any need for modification, using their standard interfaces. The more such
modules become available as ready-made, well-documented, portable, off-the-shelf
products for different languages, the less costly will be the strategy of solid solutions
in practical applications.

The main reason for the long-term superiority of solid solutions, however, is quality.
This is because a 70 % smart solution is typically very difficult or even impossible to
improve to 71 %.

2.4 Beginnings of Machine Translation

The choice between a smart and a solid solution is exemplified by machine translation.
Translation in general requires understanding a text or utterance in a certain language
(interpretation) and reconstructing it in another language (production).
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On the one hand, translation goes beyond the general repertoire of natural commu-
nication. Superficially, it may seem related to bilingual communication. Bilingualism,
however, is merely the ability to switch between languages, whereby only one lan-
guage is used at any given time – in contradistinction to translation.

On the other hand, translation offers the facilitating circumstance that a coher-
ent source text is given in advance – in contrast to automatic language production,
which has to grapple with the problems of ‘what to say’ and ‘how to say it’. A given
source text can be utilized to avoid the really difficult problems of interpretation (e.g.,
a language-independent modeling of understanding) and production (e.g., the selec-
tion of content, the serialization, the lexical selection) in order to automatically trans-
late large amounts of nonliterary text, usually into several different languages at once.

The administration of the European Union,6 for example, must publish every report,
protocol, decree, law, etc., in the 24 different languages of the member states (as of
2013). For example, a decree formulated in French under a French EU presidency
would have to be translated into the following 22 languages.

French → Bulgarian French → Irish
French → Czech French → Latvian
French → Danish French → Lithuanian
French → Dutch French → Maltese
French → English French → Polish
French → Estonian French → Portuguese
French → Finnish French → Slovene
French → German French → Slovak
French → Greek French → Spanish
French → Hungarian French → Swedish

Under a Danish EU presidency, on the other hand, a document might first be formu-
lated in Danish. Then it would have to be translated into the remaining EU languages,
resulting in another set of 22 language pairs.

The total number of language pairs for a set of different languages is determined by
the following formula:

2.4.1 FORMULA TO COMPUTE THE NUMBER OF LANGUAGE PAIRS

n · (n − 1), where n = number of different languages

For example, an EU with 23 different languages has to deal with a total of 23 · 22 =
506 language pairs.

In a language pair, the source language (SL) and the target language (TL) are dis-
tinguished. For example, ‘French→Danish’ and ‘Danish→French’ are different lan-
guage pairs. The source language poses the task of correctly understanding the mean-
ing, taking into account the domain and the context of utterance, whereas the target
language poses the task of formulating the meaning in a rhetorically correct way.

6 Another example is the United Nations, which generates a volume of similar magnitude.



2.4 Beginnings of Machine Translation 35

The first attempts at machine translation tried to get as far as possible with the new
computer technology, avoiding linguistic theory as much as possible. This resulted in
the smart solution of ‘direct translation’, which was dominant in the 1950s and 1960s.

Direct translation systems assign to each word form in the source language a cor-
responding form of the target language. In this way the designers of these systems
hoped to avoid a meaning analysis of the source text, while arriving at translations
which are syntactically acceptable and express the meaning correctly.

2.4.2 SCHEMA OF DIRECT TRANSLATION

Each language pair requires the programming of its own direct translation system.
Direct translation is based mainly on a differentiated dictionary, distinguishing

many special cases for a correct assignment of word forms in the target language.
In the source language, grammatical analysis is limited to resolving ambiguities as
much as possible; in the target language, it is limited to adjusting the word order and
handling agreement.

The methodological weakness of direct translation systems is that they do not sys-
tematically separate source language analysis and target language synthesis. Conse-
quently one is forced with each new text to add new special cases and exceptions. In
this way the little systematic structure which was present initially is quickly swept
away by a tidal wave of exceptions and special cases.

Even though representatives of the direct approach asserted repeatedly in the 1950s
that the goal of machine translation, namely

FULLY AUTOMATIC HIGH QUALITY TRANSLATION (FAHQT)

was just around the corner, their hopes were not fulfilled. Hutchins (1986) provides the
following examples to illustrate the striking shortcomings of early translation systems:

2.4.3 EXAMPLES OF AUTOMATIC MIS-TRANSLATIONS

Out of sight, out of mind. ⇒ Invisible idiot.

The spirit is willing, but the flesh is weak. ⇒ The whiskey is all right, but the
meat is rotten.

La Cour de Justice considère la création d’un sixième poste d’avocat
général. ⇒ The Court of Justice is considering the creation of a sixth avocado
station.
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The first two examples are apocryphal, described as the result of an automatic trans-
lation from English into Russian and back into English. The third example is docu-
mented in Lawson (1983) as output of the SYSTRAN system.

An attempt to avoid the weaknesses of direct translation is the transfer approach:

2.4.4 SCHEMA OF THE TRANSFER APPROACH

The transfer approach is characterized by a modular separation of

1. source language analysis and target language synthesis, of
2. linguistic data and processing procedures, and of the
3. lexica for source language analysis, target language transfer and target language

synthesis.

The result is a clearer structure as compared to the direct approach, facilitating de-
bugging and upscaling. Implementing the different modules independently of each
other and separating the computational algorithm from the language-specific data
also makes it possible to re-use parts of the software when adding another language
pair.

For example, given a transfer system for the language pair A-B, adding the new
language pair A-C will require writing new transfer and synthesis modules for lan-
guage C, but the analysis module of the source language A may be re-used. Further-
more, if the language-specific aspects of the new transfer and synthesis modules are
written within a prespecified software framework suitable for different languages, the
new language pair A-C should be operational from the beginning.

The three phases of the transfer approach are illustrated below with a word form.

2.4.5 THREE PHRASES OF A WORD FORM TRANSFER English-German

1. Source language analysis:
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The source language analysis produces the syntactic category (N A V) of the
inflectional form (categorization) and the base form know (lemmatization).

2. Source-target language transfer:
Using the base form resulting from the source language analysis, a source-target
language dictionary provides the corresponding base forms in the target lan-
guage.

3. Target language synthesis
Using the source language category (resulting from analysis) and the target lan-
guage base forms (resulting from transfer), the desired target language word
forms are generated based on target language morphology.

wußte kannte
wußtest kanntest
wußten kannten
wußtet kanntet

The transfer of a syntactic structure functions similarly to the transfer of word forms.
First, the syntactic structure of the source language sentence is analyzed. Second,
a corresponding syntactic structure of the target language is determined (transfer).
Third, the target language structure is supplied with the target language word forms
(synthesis), whereby correct handling of agreement, domain-specific lexical selection,
correct positioning of pronouns, rhetorically suitable word order, and other issues of
this kind must be resolved.

Due to similarities between the direct and the transfer methods, they have the fol-
lowing shortcomings in common:

2.4.6 SHORTCOMINGS OF THE DIRECT AND THE TRANSFER APPROACH

1. Each language pair requires a special source-target component.
2. Analysis and synthesis are limited to single sentences.
3. Semantic and pragmatic analyses are avoided, by attempting automatic transla-

tion without understanding the source language.

Thus, the advantage of the transfer approach over the direct approach is limited to the
re-usability of certain components, specifically the source language analysis and the
target language synthesis for additional language pairs.

2.5 Machine Translation Today

The importance of language understanding for adequate translation is illustrated by
the following examples:
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2.5.1 SYNTACTIC AMBIGUITY IN THE SOURCE LANGUAGE

1. Julia flew and crashed the airplane.

Julia (flew and crashed the airplane)
(Julia flew) and (crashed the airplane)

2. Susanne observed the yacht with a telescope.
Susanne observed the man with a beard.

3. The mixture gives off dangerous cyanide and chlorine fumes.

(dangerous cyanide) and (chlorine fumes)
dangerous (cyanide and chlorine) fumes

The first example is ambiguous between using the verb fly transitively (someone flies
an airplane) or intransitively (someone/-thing flies). The second example provides
a choice between an adnominal and an adverbial interpretation of the prepositional
phrase (Sect. 12.5). The third example exhibits a scope ambiguity regarding dan-
gerous. A human translator recognizes these structural ambiguities, determines the
intended reading, and recreates the proper meaning in the target language.

A second type of problem for translation without understanding the source language
arises from lexical differences between source and target language:

2.5.2 LEXICAL DIFFERENCES BETWEEN SOURCE AND TARGET

1. The men killed the women. Three days later they were caught.
The men killed the women. Three days later they were buried.

2. know: wissen savoir
kennen connaître

3. The watch included two new recruits that night.

When translating example 1 into French, it must be decided whether they should be
mapped into ils or elles – an easy task for someone understanding the source language.
Example 2 illustrates the phenomenon of a lexical gap: whereas French and German
distinguish between savoir–wissen and connaître–kennen, English provides only one
word, know. Therefore a translation from English into French or German makes it
necessary to choose the correct variant in the target language. Example 3 shows a
language-specific lexical homonymy. For translation, it must decided whether watch
should be treated as a variant of clock or of guard in the target language.

A third type of problem arises from syntactic differences between the source and
the target language:

2.5.3 SYNTACTIC DIFFERENCES BETWEEN SOURCE AND TARGET

1. German:
Auf dem Hof sahen wir einen kleinen Jungen, der einem Ferkel nachlief.

Dem Jungen folgte ein großer Hund.
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2. English:
In the courtyard we saw a small boy running after a piglet.
(a) A large dog followed the boy.
(b) The boy was followed by a large dog.

German with its free word order can front the dative dem Jungen in the second sen-
tence, providing textual cohesion by continuing with the topic. This cannot be pre-
cisely mirrored by the English translation because of its fixed word order. Instead,
one can either keep the active verb construction of the source language in the trans-
lation (a), losing the textual cohesion, or one can take the liberty of changing the
construction into passive (b). Rhetorically the second choice would be preferable in
this case.

A fourth type of problem is caused by the fact that sequences of words may be-
come more or less stable in a language, depending on the context of use. These fixed
sequences range from frequently used ‘proverbial’ phrases to collocations and idioms.

2.5.4 COLLOCATION AND IDIOM

strong current | high voltage (but: *high current | *strong voltage)
bite the dust | ins Gras beißen (but: *bite the grass | *in den Staub beißen)

For adequate translation, colloquial and idiomatic relations such as those above must
be taken into account.

The problems illustrated in 2.5.1–2.5.4 cannot be treated within morphology and
syntax alone. Thus, any attempt to avoid a semantic and pragmatic interpretation in
machine translation leads quickly to a huge number of special cases. As a conse-
quence, such systems cannot be effectively maintained.

In light of these difficulties, many practically oriented researchers have turned away
from the goal of fully automatic high quality translation (FAHQT) to work instead on
partial solutions which promise quick help in high volume translation.

2.5.5 PARTIAL SOLUTIONS FOR PRACTICAL MACHINE TRANSLATION

1. Machine-aided translation (MAT) supports human translators with comfortable
tools such as online dictionaries, text processing, morphological analysis, etc.

2. Rough translation – as provided by an automatic transfer system – arguably re-
duces the translators’ work to correcting the automatic output.

3. Restricted language provides a fully automatic translation, but only for texts
which fulfill canonical restrictions on lexical items and syntactic structures.

Systems of restricted language constitute a positive example of a smart solution.
They utilize the fact that the texts to be translated fast and routinely into numerous
different languages, such as maintenance manuals, are typically of a highly schematic
nature. By combining aspects of automatic text generation and machine translation,
the structural restrictions of the translation texts can be exploited in a twofold manner.
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First, an online text processing system helps the authors of the original text with
highly structured schemata which only need to be filled in (text production). Second,
the online text system accepts only words and syntactic constructions for which cor-
rect translations into the various target languages have been carefully prepared and
implemented (machine translation).

The use of restricted language may be compared to the use of a car. To take ad-
vantage of motorized transportation, one has to stay on the road. In this way one may
travel much longer distances than one could on foot. However, there are always places
a car cannot go. There one can leave the car and continue by walking.

Similarly, due to their automatic input restrictions, systems of restricted language
provide reliable machine translation which is sufficiently correct in terms of form
and content. If the text to be translated does not conform to the restricted language,
however, one may switch off the automatic translation system and look for a human
translator.

Besides these smart partial solutions, the solid goal of fully automatic high qual-
ity translation (FAHQT) for nonrestricted language has not been abandoned. Today’s
theoretical research concentrates especially on the interlingua approach, including
knowledge-based systems of artificial intelligence. In contrast to the direct and the
transfer approach, the interlingua approach does not attempt to avoid semantic and
pragmatic interpretation from the outset.

The interlingua approach is based on a general, language-independent level called
the interlingua. It is designed to represent contents derived from different source lan-
guages in a uniform format. From this representation, the surfaces of different target
languages are generated.

2.5.6 SCHEMA OF THE INTERLINGUA APPROACH

An interlingua system handles translation in two independent steps. The first step
translates the source language text into the interlingua representation (analysis). The
second step maps the interlingua representation into the target language (synthesis).

It follows from the basic structure of the interlingua approach that for n(n − 1)

language pairs only 2n interlingual components are needed (namely n analysis and
n synthesis modules), in contrast to the direct and the transfer approach which re-
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quire n(n − 1) components. Thus, as soon as more than three languages (n > 3) are
involved, the interlingua approach has a substantial advantage over the other two.

The crucial question, however, is the exact nature of the interlingua. The following
interlinguas have been proposed:

1. an artificial logical language,
2. a semi-natural language like Esperanto which is man-made, but functions like a

natural language,
3. a set of semantic primitives common to both the source and the target language,

serving as a kind of universal vocabulary.

Closer inspection shows, however, that these proposals have not yet resulted in the-
oretically and practically acceptable results. Existing interlingua systems are highly
experimental, usually illustrating theoretical principles by translating tiny amounts of
data by means of huge systems.

The experimental character of these attempts is not surprising because a gen-
eral solution to interlingua translation may almost be equated with modeling the
mechanism of natural language communication. After all, interlingua translation re-
quires (i) a language-independent representation of cognitive content in the interlin-
gua, (ii) the automatic translation of the natural source language into the language-
independent content representation, and (iii) the automatic generation of the natural
target language from the language-independent content representation.

Conversely, as soon as natural communication has been modeled on the computer
in a general way, fully automatic high quality translation (FAHQT) is within reach.
At the same time, all the other applications of computational linguistics mentioned
in 1.1.2, such as human-computer communication in natural language, a concept-
based indexing of textual databases with maximal recall and precision, etc., can be
provided with solid solutions as well, using available off-the-shelf modules.

These applications are one reason why the SLIM theory of language aims from the
outset at modeling the mechanism of natural language communication in general.
Thereby verbal and nonverbal contents are represented alike as concatenated propo-
sitions, defined as sets of bidirectionally connected proplets in a content-addressable
database. Though partially language-independent, these contents may differ from lan-
guage to language in terms lexicalization and agreement information.
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Exercises

Section 2.1
1. Explain the notions recall and precision using the example of a database con-

taining 300 texts relevant for a given query, whereby 1000 texts are retrieved, of
which 50 turn out to be relevant.

2. What are the weaknesses of purely technology-based indexing and retrieval in
textual databases?

3. Give examples in which truncation retrieves irrelevant and misses relevant word
forms.

4. Read Chap. 11, Language Analysis and Understanding, in Salton (1989)
(pp. 377–424). Give a written summary of three to five pages of the linguistic
methods for improving information retrieval described there.

Section 2.2
1. Which components of a textual database system are susceptible to linguistically

based optimization?
2. What is the difference between on-the-fly processing and batch mode process-

ing? Illustrate the difference using the examples of query expansion, indexing,
and processing of a query result.

3. Why is high quality indexing better suited for fast search than preprocessing the
query or postprocessing the retrieved data?

4. What is the cost of high quality indexing as compared to preprocessing the query
or postprocessing the retrieved data?

5. Investigate whether the thesaurus of WordNet raises or lowers precision.

Section 2.3
1. What are the different ways of improving retrieval from a textual database, and

how are they connected with each other?
2. Describe the different advantages and disadvantages of smart versus solid solu-

tions in applications of computational linguistics.
3. What kinds of applications are not suitable for smart solutions?
4. Call up the Eliza program in the Emacs editor with ‘meta-x doctor’ and check it

out. Explain why the Eliza program is a smart solution. What is the function of
grammatical components in Eliza?

Section 2.4
1. Describe the differences between the direct and the transfer approach to machine

translation.
2. What is the ultimate goal of machine translation?
3. In 1995, the EU was expanded from 12 to 15 member states, increasing the num-

ber of different languages from nine to 11. How many additional language pairs
resulted from this expansion?
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4. Which components of a transfer system can be re-used, and which cannot? Ex-
plain your answer with the example of six language pairs for the languages
English, French, and German. Enumerate the components necessary in such a
system.

Section 2.5
1. Which phenomena of language use make an understanding of the source lan-

guage necessary for adequate translation?
2. It is sometimes pointed out that English has no word corresponding to the Ger-

man Schadenfreude. Does this mean in your opinion that the corresponding con-
cept is alien to speakers of English and cannot be expressed? Provide two further
examples of lexical gaps relative to language pairs of your choice.

3. Provide two examples of collocations.
4. Where in MT could one use off-the-shelf components of grammar?
5. What linguistic insights could be gained from building a system of controlled

language?
6. Why is machine translation with controlled language an example of a smart so-

lution?
7. What is an interlingua?
8. How many additional components are needed when adding three new languages

to an interlingua system?



3. Cognitive Foundations of Semantics

Modeling the mechanism of natural communication in terms of a computationally ef-
ficient, general theory has a threefold motivation in computational linguistics. First,
theoretically it requires discovering how natural language actually works – surely an
important problem of general interest. Second, methodologically it provides a uni-
fied, functional viewpoint for developing the components of grammar on the com-
puter and allows objective verification of the theoretical model in terms of its im-
plementation. Third, practically it serves as the basis for solid solutions in advanced
applications.

The mechanism of natural communication is described in Chaps. 3–6 in terms of
constructing a robot named CURIOUS. The present chapter prepares the ground by
describing how CURIOUS perceives and cognitively processes its immediate environ-
ment. The result is a preliminary version of the robot functioning without language,
but suitable for adding a language component in Chap. 4.

Section 3.1 describes the cognitive abilities of CURIOUS in relation to its task
environment. Section 3.2 explains how CURIOUS recognizes simple geometric ob-
jects. Section 3.3 defines the notions of the internal context and its concepts. Sec-
tion 3.4 describes how the analysis of the task environment results in the automatic
derivation of context propositions. Section 3.5 integrates the components of CURI-
OUS into a functioning system and defines a program which controls the construction
and the updating of the robot’s internal representation of its external task environ-
ment.

3.1 Prototype of Communication

The question of how natural language functions in communication may seem com-
plicated because there are so many different ways of using language. Consider the
following examples:

3.1.1 VARIANTS OF LANGUAGE COMMUNICATION

– two speakers are located face to face and talk about concrete objects in their imme-
diate environment

R. Hausser, Foundations of Computational Linguistics,
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– two speakers talk on the phone about events experienced together in the past
– a merchant writes to a company to order merchandise in a certain number, size,

color, etc., and the company responds by filling the order
– a newspaper article reports a planned extension of public transportation
– a translator reconstructs an English short story in German
– a teacher of physics explains the law of gravitation
– a registrar issues a marriage license
– a judge announces a sentence
– a conductor says: End of the line, everybody please get off!
– a sign reads: Don’t walk on the grass!
– a professor of literature interprets an expressionistic poem
– an author writes a science fiction story
– an actor speaks a role

These different variants are not per se an insurmountable obstacle to designing a gen-
eral model of natural language communication. They merely require finding a basic
mechanism which works for all of them while accommodating their respective differ-
ences.

The SLIM theory of language proceeds on the hypothesis that there is a basic pro-
totype which includes all essential aspects of natural language communication. This
prototype is defined as follows:

3.1.2 PROTOTYPE OF COMMUNICATION

The basic prototype of natural language communication is the direct face-to-
face discourse of two partners talking about concrete objects in their immedi-
ate environment.

Possible alternatives would be approaches which take as their basic model, for exam-
ple, complete texts or the signs of nature, such as smoke indicating fire.

The prototype hypothesis is proven in two steps. First, a robot is described which al-
lows unrestricted natural human-computer communication within the basic prototype.
Second, it is shown that all the other variants are special cases or extensions which
can easily be integrated into the cognitive structure of the robot.

Realizing the prototype of communication as a functioning robot requires an exact
definition of the following components of basic communication:

3.1.3 THREE COMPONENTS OF THE COMMUNICATION PROTOTYPE

– Specification of the task environment1

1 The notion task environment was introduced by Newell and Simon (1972). It refers to
the robot’s external situation. The robot-internal representation of the task environment
is called the problem space.
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– Structure of the cognitive agent
– Specification of the language

The task environment of the robot CURIOUS is a large room with a flat floor. Dis-
tributed randomly on the floor are objects of the following kinds:

3.1.4 OBJECTS IN THE WORLD OF CURIOUS

– triangles (scalene, isosceles, etc.)
– quadrangles (square, rectilinear, etc.)
– circles and ellipses

These objects of varying sizes and different colors are elements of the real world.
The robot is called CURIOUS2 because it is programmed to constantly observe the

state of its task environment. The task environment keeps changing in unforeseeable
ways because the human ‘wardens’ remove objects on the floor, add others, or change
their position in order to test CURIOUS’ attention.

CURIOUS knows about the state of its task environment by exploring it regu-
larly. To avoid disturbing the objects on the floor, CURIOUS is mounted on the
ceiling. The floor is divided into even-sized fields which CURIOUS can visit from
above.

The basic cognition of CURIOUS includes an internal map divided into fields corre-
sponding to those on the floor and a procedure indicating its current external position
on the internal map. Furthermore, CURIOUS can specify a certain goal on its internal
map and then adjust its external position accordingly.

When CURIOUS finds an object while visiting a certain field, the object is analyzed
and the information is stored as, for example, Isosceles red triangle in field D2. By
systematically collecting data of this kind for all fields, CURIOUS is as well-informed
about its task environment as its human wardens.

3.2 From Perception to Recognition

The first crucial aspect of this setup is that the task environment is an open world:
the objects in the task environment are not restricted to a fixed, predefined set, but
can be processed by CURIOUS even if some disappear and new ones are added in
unpredictable ways.

The second crucial aspect is that the task environment is part of the real world.
Thus, for the proper functioning of CURIOUS a nontrivial form of reference must be
implemented, allowing the system to keep track of external objects.

2 CURIOUS is an advanced variant of the COLOR READER described in CoL, pp. 295f.
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The cognitive functioning of CURIOUS presupposes the real external world as a
given.3 Its internal representations do not attempt to model the external world com-
pletely, but are limited to properties necessary for the intended interaction with the
external world, here the perception and recognition of two-dimensional geometric ob-
jects of varying colors.

The performance of the system is evaluated according to the following two criteria:

3.2.1 CRITERIA FOR EVALUATING CURIOUS

– Behavior test: measuring active and reactive behavior
– Cognition test: measuring cognitive processing directly

The behavior test is the conventional method of observing actions and reactions of
cognitive agents in controlled environments. If only behavior tests are available –
as is normally the case with natural cognitive agents – the examination of cognitive
functions is limited.4

The cognition test consists in evaluating the cognitive performance of a system di-
rectly. This kind of test presupposes that the internal states can be accessed and accu-
rately interpreted from the outside.5

A cognitive agent interacts with the world in terms of recognition and action. Recog-
nition is the process of transporting structures of the external world into the cognitive
agent. Action is the process of transporting structures originating inside the cognitive
agent into the world.

The processes of recognition and action may be described at different levels of ab-
straction. Modeling vision, for example, is complicated by such problems as separat-
ing objects from the background, completing occluded portions, perception of depth,
handling reflection, changes in lighting, perception of motion, etc.6

For purposes of grounding a semantics procedurally, however, a relatively high level
of abstraction may be sufficient. As an illustration consider a robot without language
observing its environment by means of a video camera. The robot’s recognition begins
with an unanalyzed internal image of the object in question, e.g., a blue square.

3 This is in accordance with the approach of nouvelle AI (Sect. 1.3), which is based on the
motto The world is its own best model (Brooks 1986).

4 Behavior tests with humans may include the use of language by interviewing the subjects
about their experience. This however, (i) introduces a subjective element and (ii) is not
possible with all kinds of cognitive agents.

5 While we can never be sure whether our human partners see the world as we do and un-
derstand us the way we mean it, this can be determined precisely in the case of CURIOUS

because its cognition may be accessed directly via the service channel. Thus, the problem
of solipsism may be overcome in CURIOUS.

6 For a summary of natural vision, see Nakayama et al. (1995). A classic treatment of arti-
ficial vision is Marr (1982). For summaries see Anderson (1990), pp. 36f., and the special
issue of Cognition, Vol. 67, 1998, edited by Tarr and Bülthoff.
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3.2.2 INTERNAL BITMAP REPRESENTATION OF EXTERNAL OBJECT

Inside the robot, the blue square is represented as a bitmap outline and its color as the
electromagnetic frequency measured, e.g., 470 nm. Just as an OCR system7 analyzes
bitmap structures to recognize letters, the robot recognizes the form of objects in its
task environment by matching their bitmap structures with corresponding patterns.

The recognition of geometric forms may be viewed as a three-step process. First,
a suitable program approximates the bitmap outline with movable bars resulting in a
reconstructed pattern:

3.2.3 ANALYSIS OF AN INTERNAL BITMAP REPRESENTATION

Second, the reconstructed pattern is logically analyzed in terms of the number of
corners, their angles, the length of the edges, etc. In our example, the logical analysis
results in an area enclosed by four lines of equal length forming four right angles.

Third, the logical analysis is classified in terms of abstract concepts, to be discussed
in the following section. The classification results in the recognition of the object in
question.8 The basic recognition procedure illustrated above with the example square

7 OCR or optical character recognition systems are used with scanners to recognize printed
text. See Sect. 1.4.

8 For the sake of conceptual simplicity, the reconstructed pattern, the logical analysis, and
the classification are described here as separate phases. In practice, these three aspects
may be closely interrelated in an incremental procedure. For example, the analysis system
may measure an angle as soon as two edges intersect, the counter for corners may be in-
cremented each time a new corner is found, a hypothesis regarding a possible matching
concept may be formed early so that the remainder of the logical analysis is used to verify
this hypothesis, etc.
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may be extended to other types of geometric objects, to properties like colors, and to
relations such as A being contained in B.9

When a system like CURIOUS is alert it is anchored in its task environment by
means of its perception and recognition. This means that the relevant aspects of its
task environment are represented internally and are updated constantly. The current
internal representation is called the (nonlanguage)10 context of a cognitive agent.

3.2.4 DEFINITION OF THE CONTEXT

The context of a cognitive agent CA at a given point of time t includes
1. the total of all current cognitive parameter values CAt ,
2. the logical analyses of the parameter values and their combinations (re-

constructed patterns),
3. the conceptual structures used to classify the reconstructed patterns and

their combinations.

The cognitive processing of CURIOUS described so far illustrates the difference be-
tween perception and recognition. The raw data provided by the video camera are
what CURIOUS perceives. Their classification with respect to geometric shape and
color constitute what CURIOUS recognizes.

3.3 Iconicity of Formal Concepts

Logical analyses as the one in 3.2.3 are classified by concepts defined as abstract
types.11 A type specifies the necessary properties of the structure to be classified as
a constellation of parameters and constants, treating accidental properties by means
of variables. When a logical analysis is recognized by means of a certain concept
type, the analysis is (i) classified by that type and (ii) instantiated as a corresponding
concept token.

9 See also Langacker (1987/1991) , who analyzes above vs. below, pp. 219, 467; before,
p. 222; enter, p. 245; arrive, p. 247; rise, p. 263; disperse, p. 268; under, pp. 280, 289; go,
p. 283; pole climber, p. 311; and hit, p. 317. These may be regarded as logical analyses in
our sense.

10 In the following, we will avoid the term ‘(non)verbal’ as much as possible because of a
possible confusion with the part of speech ‘verb.’ Instead of ‘nonlanguage cognition’ we
will use the term ‘context-based cognition.’ Instead of ‘verbal cognition’ we will use the
term ‘language-based cognition.’

11 The type/token distinction was introduced by the American philosopher and logician
Charles Sanders PEIRCE (1839–1914), see CP, Vol. 4, p. 375. An example of a token is
the actual occurrence of a sign at a certain time and a certain place, for example the now
following capital letter: A. The associated type, on the other hand, is the abstract structure
underlying all actual and possible occurrences of this letter. Realization-dependent differ-
ences between corresponding tokens, such as size, font, place of occurrence, etc., are not
part of the associated type.
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A concept type is defined as a combination of constants and variables. The variables
enable the type to match arbitrarily many concept tokens. A concept token shares the
constants with its type, but instantiates the variables as constants as well. In this way,
a given type matches an open number of different logical analyses of the same kind.
Consider the following example:

3.3.1 CONCEPT TYPE OF square
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

edge 1 : α cm
angle 1/2 : 90◦
edge 2 : α cm
angle 2/3 : 90◦
edge 3 : α cm
angle 3/4 : 90◦
edge 4 : α cm
angle 4/1 : 90◦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This concept type is defined as a feature structure. The necessary properties of the
concept are represented by eight attribute-value pairs (avp), four of which specify the
edges and four the angles. Also, the values of the angles are specified as the constant
90◦. The accidental property, in contrast, is the edge length, specified as the variable
α.12 Instances of the same variable in a concept must all take the same value. The
variable makes the concept type applicable to an open number of squares of any size.

3.3.2 DEFINITION: CONCEPT TYPE

A concept type is the structural representation of a characteristic logical anal-
ysis, whereby accidental properties are defined as variables.

When the concept type is matched onto the logical analysis in 3.2.3, the variables are
bound to a particular edge length, here 2 cm, resulting in the instantiation of a tokenloc.

3.3.3 CONCEPT TOKENloc OF A square
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

edge 1 : 2 cm
angle 1/2 : 90◦
edge 2 : 2 cm
angle 2/3 : 90◦
edge 3 : 2 cm
angle 3/4 : 90◦
edge 4 : 2 cm
angle 4/1 : 90◦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

loc

12 Technically, this example would require an operator – for example a quantifier – binding
the variables in its scope.
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The feature loc specifies when and where the token was recognized, i.e., the spatio-
temporal location.

3.3.4 DEFINITION: CONCEPT TOKENloc

A concept tokenloc results from successfully matching a concept type onto a
corresponding logical analysis of a parameter constellation at a certain spatio-
temporal location.

Concept types are usually defined for subsets of the available parameters and their
possible values. For example, the concept in 3.3.1 applies to a certain constellation
of visual parameter values. Other parameters, e.g., color values, are disregarded by
the type square. It is possible, however, to define elementary concepts which apply
to a multitude of different parameters. For example, situation could be defined as the
elementary concept type which matches the totality of current parameter values.

Elementary concept types may be defined only for those notions for which the cor-
responding parameters have been implemented. For example, the concepts for warm
and cold may be defined only after (i) the robot has been equipped with suitable sen-
sors for temperature and (ii) the resulting measurements have been integrated into the
robot’s conceptual structure.

The constellation of parameter values, concept types, and concept tokensloc provides
not only for an abstract characterization of recognition, but also of action. Thereby
recognition and action differ in the direction of the respective procedures.

3.3.5 ABSTRACT CHARACTERIZATION OF RECOGNITION AND ACTION

Recognition begins with the incoming parameter values which are logically analyzed
and classified by means of a matching concept type. A successful matching binds the
variables to particular values and results in a corresponding concept tokenloc. In this
way constellations of perception parameters are individuated into concept tokensloc.

Action begins with a certain concept tokenloc which is to be realized as a specific
outgoing parameter constellation by means of a corresponding concept type. Consider
for example a robot equipped with a gripping device wanting to pick up a glass. For
this, a certain concept tokenloc is realized as a gripping action (token) with the help of
the concept type (general procedure). Thereby distance, size, firmness, etc., of the ob-
ject are determined via the robot’s recognition and integrated into the planned action.

The natural evolution of concept types can be analyzed as an abstraction over log-
ically similar parameter constellations, whereby the accidental aspects of constella-
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tions are represented by variables. Thus the types originate as the formation of classes
over sets of similar raw data of perception or unconscious action. Only after the for-
mation of types can individual tokens be instantiated on the basis of these types.13

A set of similar parameter values may result in an abstract type for different rea-
sons: frequent occurrence, rare occurrence, simple logical (e.g., geometrical) struc-
ture, pleasant or unpleasant feeling, etc. For example, geometric shapes (visual pa-
rameter values) which are logically similar in that they consist of three straight, in-
tersecting lines may be summarized as an abstract concept type which speakers of
English happen to call a triangle. Once the concept type is available it can be applied
to newly encountered parameter values resulting in individualized concept tokensloc

of triangles. Correspondingly, electromagnetic frequencies which are similar in that
they fall into the same narrow range may result in the abstract concept type of a certain
color.14

Our analysis of concept type formation and concept type use is an iconic theory. The
notion of iconicity derives from the classical Greek word for image (ikon). Intuitively,
iconicity means the following:

3.3.6 ASPECTS OF ICONICITY

– The parameter values of the internal context are images insofar as they reflect the
corresponding structures of the real world.

13 In the course of evolution, the concept types and concept tokensloc of recognition and action
have acquired additional functions: concept tokensloc are used for storing content in the
cognitive agent’s memory, while concept types serve as language meanings.

Our analysis of language evolution, beginning here with non-verbal cognition based on
concept types and concept tokensloc and continuing in the following chapters by our analyz-
ing their functional interaction, is of a logical nature. Other approaches to human language
evolution are concerned with quite different questions such as

– Why do humans have language while chimpanzees do not?
– Did language arise in ‘male’ situations such as Look out, a tiger!, in ‘female’ situations of

trust-building during grooming, or out of chanting?
– Did language evolve initially from hand signs or was the development of a larynx capable

of articulation a precondition?

For further discussion of these questions, which are not addressed here, see Hurford et al.
(1998).

14 This abstract description of visual recognition is compatible with the neurological view.
For example, after describing the neurochemical processing of photons in the eye and the
visual cortex, Rumelhart (1977), pp. 59f., writes:

These features which are abstracted from the visual image are then to be matched
against memorial representations of the possible patterns, thus finally eliciting a name
to be applied to the stimulus pattern, and making contact with stored information
pertaining to the item.
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– The reconstructed patterns (concept tokensloc) are images of parameter values be-
cause they are logical analyses of parameter values.

– The concept types of the internal context are images insofar as they (i) originate as
abstractions over similar parameter constellations and (ii) characterize associated
classes of reconstructed patterns.

That the recognition of CURIOUS is iconic follows quite simply from the requirement
that the system should perceive its task environment correctly. For example, if an ex-
ternal triangle is represented internally as the outline of a quadrangle, then the system
is obviously deficient.

The same holds for action. Assume that CURIOUS is equipped with a gripping de-
vice and wants to move an object from field A2 into field A4. If the external action
of the gripping device is not iconic with respect to the internal presentation of the
movement in question and the object is moved instead into field A5, then the system
obviously does not function correctly.

In the literature, the properties and the status of iconicity have long been controver-
sial and were, for example, at the core of the debate between the naturalists and the
conventionalists in ancient Greece (Sect. 6.4). The often fierce opposition to iconic
constructs15 stems from misunderstanding iconicity in the sense of naive little pic-
tures. That this is not meant at all is illustrated by the examples in 3.3.3 (parameter
constellation, concept tokenloc) and 3.3.1 (concept type), which use an abstract coding.
The notion of an icon must be understood in the mathematical sense of a homomor-
phism (Sect. 21.3), that is, as a structure-preserving representation.

For example, if the photograph of a familiar face is scanned into the computer and
ultimately coded as a sequence of 0s and 1s, this coding is iconic in our sense because
the original image can be recreated from it on the screen. This point of view was
taken by the English philosopher John LOCKE (1632–1704). Locke (1690) said that a
person seeing a tree has an image of that tree in his head – which is shown by the fact
that the person can later make a drawing.

There are basically three arguments against iconicity, which seem to be as popular
as they are misguided. The first one is based on the claim that if one were to surgically
search the brain of a person who has seen a tree, one would not find such an image.

In reply we point out that this method is much too crude. After all, in the analogous
case of a computer it is not certain that a thorough investigation of the hardware would
discover an image that had been scanned in – even though the computer is a man-
made machine and as such is completely understood. Furthermore, modern research
has shown that the optical cortex does indeed exhibit ‘iconic representations’ such as

15 For example, Ogden and Richards (1923) call the use of icons or images in the analysis
of meaning ‘a potent instinctive belief being given from many sources’ (p. 15) which is
‘hazardous,’ ‘mental luxuries,’ and ‘doubtful’ (p. 59). In more recent years, the idea of
iconicity has been quietly rehabilitated in the work of Chafe (1970), Johnson-Laird (1983)
pp. 146f., Givón (1985) p. 189, Haiman (ed.) (1985a), Haiman (1985b), and others.
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“the line, edge, and angle detectors discovered by Hubel and Wiesel (1962) and the
iconic or sensory memories proposed by Sperling (1960) and Neisser (1967)”16 from
which the internal representations of the images are built up.

The second argument was used in the famous controversy among the British em-
piricists regarding the (non)existence of abstract ideas. Locke (1690) took the view
that recognition is based on abstract concepts or ‘ideas’ in the head of the perceiving
person. He said that a person recognized, for example, a triangle on the basis of an
internal concept (idea) of a triangle.

A generation later this analysis was attacked by Berkeley (1710). George BERKE-
LEY (1685–1753), a bishop by profession,17 regarded Locke’s approach as naive and
tried to reduce it to absurdity by asking what kind of triangle the concept should be
exactly: isosceles, scalene, right-angled?

CURIOUS, however, shows Berkeley’s argument to be a fallacy. CURIOUS uses an
abstract concept of a triangle based on a formal definition involving three straight,
intersecting lines forming three angles which together add up to 180 degrees. This
concept is realized procedurally as part of a pattern recognition program which
may be demonstrated as recognizing all possible kinds of triangles (analogous to
3.2.3).18

The third argument is the homunculus argument, which was used by David HUME

(1711–1776) two generations after Locke. Hume’s (1748) argument goes like this: if
there are pictures in the mind, then there must be someone to see them. Yet postulating
a little man (homunculus) in the head to see the images would not do because the little
man would have images in his little head in turn, requiring another homunculus, and so
on. Since postulating a homunculus is of no help for understanding the interpretation
of images, the images themselves are concluded to be superfluous.

CURIOUS, however, shows Hume’s argument to be a fallacy as well. CURIOUS uses
two kinds of iconic structures: concept types and concept tokensloc. Neither of them
is intended to be seen by any CURIOUS-internal homunculus. Instead the concept
types are matched with parameter values, whereby their external origin (‘Urbild’) is
classified and instantiated as a concept tokenloc (3.3.5).

16 Palmer (1975).
17 Peirce (1871) writes about Berkeley:

Berkeley’s metaphysical theories have at first sight an air of paradox and levity very
unbecoming to a bishop. He denies the existence of matter, our ability to see dis-
tance, and the possibility of forming the simplest general conception; while he admits
the existence of Platonic ideas; and argues the whole with a cleverness which every
reader admits, but which few are convinced by.

18 The program may even be expanded to recognize bitmap outlines with imprecise or uneven
contours by specifying different degrees of granularity. Cf. Austin’s (1962) example France
is hexagonal.
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3.4 Context Propositions

In order to perform its task, CURIOUS must (i) move through its environment, (ii) an-
alyze each current field, (iii) represent the objects found there internally, and (iv) inte-
grate the results into a correct cognitive representation of the overall situation. To this
purpose, the concept tokensloc derived are combined into elementary propositions.

In accordance with the classic view since ARISTOTLE (384–322 B.C.), propositions
are simple representations of what is. Propositions are so general and abstract that they
have been regarded as both the states of real or possible worlds and the meanings of
language sentences.

In logic, propositions are built from three basic kinds of elements, called argu-
ments, functors, and modifiers. An elementary proposition consists of one functor
which combines with a characteristic number of arguments. Modifiers are optional
and may apply to functors as well as to arguments.

In philosophy, the arguments are the objects in the world, the functors are the (in-
trapropositional) relations, and the modifiers are the properties. These constitute a
simple ontology – in contradistinction to other possible ontologies, such as that of
physics (based on atoms, gravity, etc.), biology (based on metabolism, reproduction,
etc.), or economy (based on markets, inflation, interest rates, etc.).

In linguistics, the arguments are the nouns, the functors are the verbs (16.2.1), and
the modifiers are the adjectives (whereby adnominals modify nominals and adverbs
modify verbs). They comprise the content words of a language, form the open word
classes (13.1.9), and are called the parts of speech.

This plurality of terminology may be summarized as follows:

3.4.1 DIFFERENT NAMES FOR THE THREE ELEMENTS OF BASIC PROPOSITIONS

(a) logic (b) philosophy (c) linguistics
1. argument object noun
2. functor relation verb
3. modifier property adjective

For simplicity, we choose noun, verb, and adj of grammar, with the possible abbrevi-
ations N, V, and A. However, because we use these notions at the language as well as
the context level, they are interpreted ontologically and called core attributes instead
of “parts of speech.”

The core attributes are used in flat, ordered feature structures,19 called proplets.20 As
examples of isolated (unconnected, lexical) proplets consider the following examples:

19 As shown in 3.3.1 and 3.3.3, but at the next higher level of grammatical complexity.
20 The term proplet is coined in analogy to droplet and refers to the basic parts of an ele-

mentary proposition. Superficially, proplets may seem to resemble the feature structures
of HPSG. The latter, however, are recursive feature structures with unordered attributes.
Intended to be part of a phrase structure tree rather than a database, they encode functor-
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3.4.2 LEXICAL ITEMS OF A PROPOSITION

⎡
⎢⎢⎣

noun: field
arg:
place:
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: contain
fnc:
time:
pc:
prn:

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

noun: square
arg:
place:
prn:

⎤
⎥⎥⎦

The ordered attributes of the rightmost proplet, for example, are noun, arg, place, and
prn. The value of the core attribute is called the core value. Here it is square, explicitly
defined as the name of the concept type defined in 3.3.1. The proplets shown above
are lexical because except for the core attributes they have no values yet.

The elements of a proposition may be connected by five kinds of basic seman-
tic relations, namely (1) subject-predicate, (2) object-predicate, (3) adnominal-noun,
(4) adverbial-verb, and (5) conjunct-conjunct. We code these relations as proplet val-
ues, defined as addresses and implemented as pointers.

For example, the content corresponding to English

The field contains a triangle and (the field contains) a square

is coded as the following set of proplets:

3.4.3 ADDRESSES ESTABLISHING INTER-PROPLET RELATIONS

The intrapropositional relations are indicated by the diagonal “—” lines; the distinc-
tion between a subject, a direct object, and an indirect object is indicated by the order
of the values in the verb’s arg attribute. The expropositional relation between the two
propositions is indicated by the diagonal “− − −” lines between the verbs. The pro-
plets of each proposition are held together by a common proposition number (prn
value), here 23 and 24, indicated by the “. . . ” lines.

By coding the semantic relations between proplets and between propositions solely
by means of addresses, proplets are order-free in that the relations are maintained re-
gardless of how the proplets are arranged in two- or three-dimensional space. This is
important for the storage and retrieval of proplets in a database. For linguistic intu-
itions, however, we represent the semantic relations graphically using characteristic
lines (edges) for (1) subject/predicate, (2) object\predicate, (3) adnominal|nominal,

argument structure in terms of embedding rather than by address, do not concatenate propo-
sitions in terms of extrapropositional relations, and do not provide a suitable basis for a
time-linear navigation and storage in a database.
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(4) adverbial|predicate, and (5) conjunct−conjunct (Sect. 23.3). Accordingly, the
above set of proplets may be represented graphically as follows:

3.4.4 AN EXAMPLE OF TWO CONTEXTUAL PROPOSITIONS

This example illustrates an automatic analysis of a situation in which CURIOUS finds
a triangle and a square in field A2 at the time Mo 14:05.

The coherence of context propositions and their connections follows from the co-
herence of the external world which they reflect (Sect. 24.5). This coherence is main-
tained by the system-internal algorithm which interprets the input parameters by auto-
matically constructing elementary propositions and combining them into subcontexts.

On the one hand, the context propositions in the database of CURIOUS relate con-
cretely to spatio-temporal reality via the place values of their objects and the time val-
ues of their relations. Thereby external and internal aspects of the agent’s cognition
may be represented equally well. This is because the method depicted in 3.3.5 is just
as suitable for analyzing internal parameters (such as hunger or the loading state of
the robot’s battery) as for analyzing external parameters (such as visual perception).21

On the other hand, the context propositions constitute an autonomous system-
internal abstract representation which may be processed independently of the spatio-
temporal reality in which they originated. For example, the context propositions may
represent information not only about current states, but also about past and possible
future states of the task environment, which can be compared with each other, etc.
The abstract processing of propositions may result in actions, however, which again
relate meaningfully to the spatio-temporal reality.

The contextual aspects of the external world, e.g., the number of planets in the solar
system, the atomic structure of the elements, the colors, etc., are inherently nonlinguis-

21 In analytic philosophy, internal parameters – such as an individual toothache – have been
needlessly treated as a major problem because they are regarded as a ‘subjective’ phe-
nomenon which allegedly must be made objective by means of indirect methods such as
the double aspect theory. See in this connection the treatment of propositional attitudes in
Sect. 20.3, especially footnote 9.
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tic in nature. To call these structures a ‘language’ is inappropriate because it would
stretch the notion of a language beyond recognition.

The essentially nonlinguistic nature of the external originals holds also for their
internal representations in the cognitive agent. Higher nontalking animals like a dog
are able to develop concept types, to derive concept tokens, to combine them into
elementary context propositions, to concatenate these into subcontexts, and to draw
inferences. These cognitive structures and procedures are not explicitly defined as a
language, however, but evolve solely as physiologically grown structures.

The contextual structures of a nontalking natural cognitive agent acquire a language
aspect (i.e., description) only if and when they are analyzed theoretically. Correspond-
ing artificial systems, on the other hand, usually begin with a language-based defini-
tion which is then realized in terms of the hardware and software of the implemen-
tation. However, even in artificial systems the language aspect may be completely
ignored once a system is up and running: on the level of its machine operations the
cognitive procedures of a nontalking robot are just as nonlinguistic as those of a cor-
responding natural agent.

The correlation between the nonlanguage and the language level in the descrip-
tion of a nontalking natural cognitive agent and its artificial model may be described
schematically as follows:

3.4.5 ARTIFICIAL MODELING OF NATURAL COGNITION

The point is that modeling the representation of context within a robot in terms of
propositions based on feature structures and defining the procedures operating on
these context structures in terms of a formal grammar is not in conflict with the es-
sentially nonlanguage character of these phenomena. Instead, feature structures and
grammatical algorithms are general abstract formalisms which may be used as much
for the modeling of nonlanguage structures as for the description of natural or ar-
tificial languages. Furthermore, once the nonlanguage structures and the associated
inferences have been implemented as electronic procedures, they function without
any recourse to the language that was used in their construction.

3.5 Recognition and Action

The cognitive representation of the task environment in the database of CURIOUS as
well as the cognitive derivation of action schemata and their realization are based on
five components which interact in well-defined procedures:
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3.5.1 SCHEMATIC STRUCTURE OF CONTEXT-BASED COGNITION

The recognition component 1 analyzes a field of CURIOUS’s task environment by
matching concept types with constellations of incoming parameter values. These are
instantiated as concept tokens (cf. recognition in 3.3.5), automatically combined into
concatenated context propositions (3.4.4), and stored in the database component 2.

A planned change of the task environment is realized by means of the action com-
ponent 5. Thereby concept tokensloc are realized with the help of concept types as
outgoing parameter constellations (action in 3.3.5). The action schemata are based on
propositions which are generated in the database component 2.

The storing of recognitions and the planning of actions require the behavior control
component 3 and the operating system 4. The control program 3 is illustrated below.

3.5.2 EXAMPLE OF A BEHAVIOR CONTROL PROGRAM FOR CURIOUS

1. Primary analysis of the current task environment:
(a) Move into the start field A1.22

(b) Analyze the current field:
(i) Approximate bitmap outline with edge program.

(ii) Measure color value inside the bitmap outline.
(iii) Derive proposition.

(c) Write proposition at index P-0.1 (present) into the database.
(d) If current field is not D4, move into the next field and enter state b. Otherwise

go to 2.
2. Secondary analysis of current task environment (inferences):

(a) Count all triangles, rectangles, squares, red triangles, etc., in the primary
analysis P-0.1 and write the result at index P-0.2 into the database.

22 The formulation in 3.5.2 assumes that the task environment is divided into 16 fields, named
A1, A2, A3, A4, B1, B2 etc., up to D4.
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(b) Compare the current secondary analysis P-0.2 with the previous secondary
analysis P-1.2 and write the result (e.g., ‘number of red triangles increased
by 2’) at index P-1.3 into the database.

3. Wait for 10 minutes.
4. Return to state 1.

This sketch must still be realized in a suitable programming language. Furthermore,
notions like ‘move into the next field’, ‘measure the color value’, or ‘wait for 10 min-
utes’, require technical components (such as a system-internal clock) which realize
these notions as corresponding operations. Neither would be a problem with existing
technology.

The components of context-based cognition are in close interaction. For example,
the behavior control guides the recognition and ensures that the resulting propositions
are stored by the operating system at the correct index in the database. Then the be-
havior control determines the name of the next field and executes the command ‘move
into the next field’ with the help of the operating system and the action component.

In the sense of nouvelle AI, CURIOUS exemplifies the notion of an autonomous
agent because its symbolic processing is connected to its recognition and action.

Without a carefully built physical grounding any symbolic representation will be
mismatched to its sensors and actuators. These groundings provide the constraints on
symbols necessary for them to be truly useful.

Brooks (1990), p. 6

In the sense of classic AI, CURIOUS exemplifies also the notion of a physical symbol
system:

The total concept [of a physical symbol system] is the join of computability, physical
realizability (and by multiple technologies), universality, the symbolic representation
of processes (i.e., interpretability), and finally, symbolic structure and designation.

Newell and Simon (1975), p. 46

The combination of an autonomous agent and a physical symbol system allow CU-
RIOUS to recognize its task environment and to act in it. In addition, CURIOUS can
refer to past and possible states of its task environment and compare them with the
current state. These inferences operate meaningfully with internal states which may
be completely independent of the current state of the concrete outside world.

As a purely contextual cognitive system, the current version of CURIOUS properly
belongs in the domain of AI and robotics. Yet its cognitive mechanism – based on pa-
rameter values, concept types, concept tokens, propositions, the automatic analysis of
artificial perception in the form of concatenated context propositions and the realiza-
tion of context propositions in the form of artificial action – is an essential foundation
of language-based cognition in computational linguistics.

This is firstly because in talking cognitive agents the contextual (nonlanguage) cog-
nitive system functions as the context of language interpretation and production. Sec-
ondly, in the extension to language, the concept types serve an additional function
as the literal meanings of the sign kind symbol. Thirdly, the analysis of context-
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based cognition is needed in order to explain the phylo- and ontogenetic develop-
ment of natural language from earlier evolutionary and developmental stages without
language.

Exercises

Section 3.1
1. Describe how the uses of natural language in 3.1.1 differ.
2. What are the communication components within the prototype hypothesis?
3. Explain the notions task environment and problem space.
4. Compare the description of natural visual pattern recognition (Rumelhart 1977;

Anderson 1990) with electronic models (e.g., Marr 1982). Bring out the dif-
ferences on the level of hardware and common properties on the logical level
between the two types of system. Refer in particular to the section Template-
Matching Models in Anderson (1990), pp. 58f.

Section 3.2
1. What criteria can be used to measure the functional adequacy of CURIOUS?
2. What is the problem of solipsism and how can it be avoided?
3. When would CURIOUS say something true (false)?
4. Describe the SHRDLU system of Winograd (1972). Discuss its critique in Drey-

fus (1981).
5. Why is SHRDLU a closed system – and why is CURIOUS an open system?
6. Does SHRDLU distinguish between the task environment and the problem

space?
7. What is the definition of the system-internal context. How does it relate to the

notions of task environment and problem space?

Section 3.3
1. Explain the notions of type and token, using the letter A as the example.
2. What is the relation between the external object, the parameter values, the con-

cept type and the concept token of a certain square?
3. How does a type originate in time?
4. Why does a token presuppose a type?
5. What is iconicity? What arguments have been made against it?
6. In what sense is the cognitive theory underlying CURIOUS iconic?
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Section 3.4
1. What are the three basic elements from which propositions are built?
2. Which language categories do the basic elements of propositions correspond to?
3. How do the propositions of the internal context relate to the external reality?
4. Why do the propositions of the internal context form an autonomous system?
5. What is the role of language in the modeling of context-based cognition?
6. Why is the use of a grammar for modeling cognitive processes not in conflict

with their essentially contextual (nonlanguage) nature?

Section 3.5
1. Describe the schematic structure of CURIOUS. Why are its components self-

contained modules and how do they interact functionally?
2. Does CURIOUS fulfill the definition of a physical symbol system?
3. What are the operations of CURIOUS and are they decidable? How are these

operations physically realized?
4. Explain how the concepts left, right, up, down, large, small, fast, slow, hard, soft,

warm, cold, sweet, sour, and loud could be added to CURIOUS.
5. How would you implement the concept search in CURIOUS?
6. Would it be possible to add the command Find a four-cornered triangle to the

behavior control 3.5.2? If so, what would happen? What is the logical status of
the notion of a four-cornered triangle?



4. Language Communication

This chapter describes the functioning of natural language. To this purpose, the robot
CURIOUS – introduced in Chap. 3 as an artificial cognitive agent without language –
is equipped with additional components needed for natural language communication
between the robot and its wardens.

Section 4.1 describes the components of language-based cognition as phylo- and
ontogenetic specializations of the corresponding components of context-based (non-
language) cognition, whereby the language-based components are arranged as a sec-
ond level above the contextual components. Section 4.2 reconstructs language-based
reference as an interaction between the levels of language and context. Section 4.3 ex-
plains the distinction between the literal meaning1 of language signs and the speaker
meaning2 of utterances. Section 4.4 describes Frege’s principle, and shows why the
phenomena of ambiguity and paraphrase are, properly analyzed, no exceptions to it.
Section 4.5 presents the principle of surface compositionality as a strict interpretation
of Frege’s principle and explains its functional and methodological role within the
SLIM theory of language.

4.1 Adding Language

Communication between humans and machines requires a common language. At
present, it is not yet possible to use natural language for this purpose. Instead, it is
necessary to devise programming languages which adapt to the primitive communi-
cation capabilities of current machines. This has the disadvantage that the users have
to learn the special commands of an artificial language.

The construction of machines which can communicate freely in a preexisting nat-
ural language (e.g., English) is the task of computational linguistics. This requires a
modeling of cognitive states and procedures.1 More specifically, a model of the speak

1 Traditional grammar and theoretical linguistics (1.2.1) avoid the modeling of cognition.
Their analyses are purely sign-oriented and concentrate on the structural properties of ex-
pressions such as word forms, sentences, or texts. For this, dictionaries have been compiled
listing the words of a language; generative syntax grammars have been developed which try
to formally distinguish between well-formed and ill-formed sentences; and the meanings
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mode must describe the internal procedures which map meanings to signs of natu-
ral language. Correspondingly, a model of the hear mode must describe the internal
procedures which map the signs of natural language to the intended meanings.

Language understanding and language production have in common that they may
be divided into two subprocedures, namely (i) sign processing and (ii) sign inter-
pretation. They differ, however, in that they apply these subprocedures in opposite
directions.

4.1.1 TWO SUBPROCEDURES OF LANGUAGE USE

Language understanding (hear mode) begins with sign processing as a precondition
for sign interpretation. Language production (speak mode) begins with the linguistic
interpretation of what is meant as a precondition for sign processing.

By analogy to the analysis of contextual recognition and action in terms of char-
acteristic constellations of parameters, concept types, and concept tokens (3.3.5), the
linguistic recognition and action (synthesis) of language signs is based on correspond-
ing correlations of parameters, surface types, and surface tokens:

4.1.2 PROCESSING OF LANGUAGE SIGNS

In the hear mode, language input is processed. It consists of incoming parameter val-
ues in the acoustic or visual medium to which surface types are applied. In the case of
a successful matching, a corresponding surface token is derived and the lexical entry
corresponding to the surface type is retrieved.

of sentences have been characterized in logical semantics as relations between expressions
and the world – omitting the cognitive structure of the speaker-hearer. When the goal is to
model successful language use, however, an agent-oriented approach cannot be avoided. It
must provide a computational reconstruction of the cognitive processing in the speak and
hear modes which is functionally equivalent to the natural prototype.
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In the speak mode, language output is processed, yielding the surface token of a
word form. It is realized with the help of the associated surface type as outgoing
parameter values in the medium of choice, e.g., speech, writing, signing.

Integrating the components of language processing into the nonlanguage version of
CURIOUS shown in 3.5.1 results in the following overall structure:

4.1.3 EXPANDED STRUCTURE OF CURIOUS

The lower level of the diagram shows the structure 3.5.1 of the contextual version of
CURIOUS, though slanted to give a three-dimensional overall view. The upper level
has the same structure as the lower level and contains the new components of language
recognition 1+ and language synthesis 5+, as well as counterparts of the components
2, 3, and 4.

Phylogenetically and ontogenetically the components of the language level may be
viewed as specializations which co-evolved with the corresponding components of the
contextual level. Thus, component 1+ of word form recognition is a special function
of the general component 1 for recognizing the task environment: just as CURIOUS

recognizes, for example, a square by matching the concept type onto parameter values,
thus forming a concept token (3.3.3 and 3.3.5, recognition), the expanded version
recognizes a language surface by matching a suitable surface type onto language-
based input parameters, resulting in a surface token (4.1.2, hearer).

Furthermore, component 5+ of language synthesis is a special function of the gen-
eral component 5 for controlling action parameters. Just as CURIOUS can, for exam-
ple, change its position from one field to another by realizing the concept tokens of an
action proposition with the help of the associated concept types and its electro-motors
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as output parameter values (3.3.5, action), it can realize the surface tokens of language
signs with the help of the associated surface types and the associated articulation as
language-based output parameters (4.1.2, speaker).

4.2 Modeling Reference

The recognition components 1 and 1+ constitute interfaces from external reality to
cognition, while the action components 5 and 5+ constitute interfaces from cogni-
tion to external reality. Furthermore, the parameters of the contextual recognition and
action components 1 and 5 provide the basis for the derivation of concept types and
concept tokens (3.3.5), while the parameters of the linguistic recognition and action
components 1+ and 5+ provide the basis for the derivation of surface types and sur-
face tokens (4.1.2).

At least equally important for contextual and linguistic recognition and action, how-
ever, are the contextual and linguistic database components 2 and 2+. They process
the information provided by the recognition components 1 and 1+. Also, from this
information they derive action plans which they pass step by step to the action com-
ponents 5 and 5+ for realization.

The contextual and linguistic databases 2 and 2+ store information in the form
of concatenated elementary propositions. The propositions at the language level are
composed of proplets (3.4.3) containing concept types (3.3.1) as core values,2 while
the propositions at the context level (3.4.4) consist of proplets which usually take
concept tokens (3.3.3) as their core values.

In the speak mode, content is communicated by mapping a subcontext of the
database 2 into language. Thereby, the propositions (tokens) of the subcontext are
matched by language propositions (types) generated in the database 2+. These lan-
guage propositions are realized as language surfaces by means of the lexicon and the
grammar.

In the hear mode, the content coded by the speaker into a language expression is re-
constructed in the hearer’s database 2. Thereby the incoming surfaces are assigned lit-
eral meanings by the lexicon and combined into language propositions of the database
2+ by means of the grammar. The speaker’s subcontext is reconstructed either by
matching these language propositions onto existing propositions in a corresponding
subcontext of the database 2 or by storing the language propositions in the subcontext
as new context propositions.

The matching process underlying language production and language understanding
requires that the language propositions (types) and the context propositions (tokens)

2 In addition to the concepts of symbols (Sect. 6.2), language propositions contain the point-
ers of indexicals (Sect. 6.3) as well as names (Sect. 6.4).
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be properly positioned relative to each other. The conceptually simplest solution is to
treat the language and the context database as two parallel layers,3 as in 4.1.3.

In summary, the SLIM theory of language reconstructs the basic communication
mechanism of natural language as an agent-internal matching between concept types
at the language level and concept tokens at the context level. This differs from the
approach of analytic philosophy and symbolic logic, which treat the central notion
of reference as a direct relation between a language sign and an object in the world,
defined in a metalanguage:

4.2.1 THE EXTERNAL VIEW OF REFERENCE IN ANALYTIC PHILOSOPHY

This way of treating reference is independent of any communicating agents.
In communication, however, there is nothing in reality corresponding to the dotted

line between the word square and the referential object. Any theory trying to explain
reference functionally by postulating any such external connection between the sign
and its referent trivializes reference by relying on a fictional construct.4

The SLIM alternative of reconstructing reference cognitively as an automatic agent-
internal type/token matching is illustrated by the following example, which uses the
type defined in 3.3.1 and the token defined in 3.3.3. The example is simplified in that
(i) the embedding of core values into the feature structure of proplets (3.4.2) and thus
(ii) any semantic relations to other proplets (3.4.3) are omitted.

3 For the purpose of programming, this solution has turned out to be insufficient (CLaTR’11,
Chap. 4).

4 Without detracting from their merits in other areas, such a trivialized treatment of refer-
ence may be found in SHRDLU (Winograd 1972) and in Montague grammar (Montague
1974). Winograd treats an expression like blue pyramid by ‘gluing’ it once and for all to
a corresponding construct in the toy world of the SHRDLU program. Montague defines
the denotation of a predicate like sleeps in the metalanguage via the denotation func-
tion F for all possible worlds and moments of time. In either case, no distinction is made
between the meanings of language expressions and corresponding sets of objects in the
world.

Binding language expressions to their referents in terms of definitions (in either a log-
ical or a programming language) has the short term advantage of (i) avoiding a semantic
analysis of language meaning and (ii) treating reference as an external connection – like the
dotted line in 4.2.1. The cost for this is high indeed: such systems are in principle limited
to being closed. See Chaps. 19–22, especially Sect. 20.3, for a detailed discussion.
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4.2.2 COGNITIVE 2 + 1 LEVEL ANALYSIS OF REFERENCE

The 2 in the 2 + 1 structure represents the language level as a surface-meaning pair.
The 1 represents the context level as a referent.

At the level of language, the word square is lexically analyzed as a fixed constella-
tion of a surface (here the letter sequence s, q, u, a, r, e), subscripted with the category
noun, and a literal meaning (here the concept type defined in 3.3.1). At the context
level, the referent is the concept token defined in 3.3.3.

In CURIOUS, the fixed connection between a surface and its literal meaning is estab-
lished by the designers, using a programming language. In humans, this connection is
established by means of conventions which each speaker-hearer has to learn (de Saus-
sure’s first law, 6.2.2).

The speaker-hearer may use (tokens of) the same sign to refer to ever new objects
in ever varying situations. Assume, for example, that two people land on the planet
Mars for the first time and both see a rock shaped like a mushroom. If one says Look,
a Mars mushroom! the other will understand.

This situation provides no occasion to establish – prior to the utterance – an ex-
ternal relation between the spontaneous ad hoc expression Mars mushroom and the
intended referent. Thus, any attempt to explain successful reference in terms of an
external relation between the signs and the referential objects, as in shown in 4.2.1, is
unrealistic.

Instead, the successful reference of the expression Mars mushroom is based on the
analyzed word forms Mars and mushroom, available to speaker and hearer as prede-
fined, internal linguistic entities consisting of a surface, a category, and a minimal
literal meaning (analogously to the analysis of the word form square shown in 4.2.2).
Furthermore, their context must (i) indicate where they presently are, and (ii) represent
the same characteristic rock formation in their respective fields of vision.
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4.3 Using Literal Meaning

Depending on whether or not the relevant context of use is the current task environ-
ment, immediate and mediated5 reference are to be distinguished:

4.3.1 IMMEDIATE AND MEDIATED REFERENCE

– Immediate reference is the speaker’s or hearer’s reference to objects in the current
task environment.6

– Mediated reference is the speaker’s or hearer’s reference to objects which exist in
memory, but not in the current task environment.7

Immediate reference and mediated reference have in common that they are based
on internal cognitive procedures. They differ only in that in immediate reference the
speaker-hearer interacts with the task environment at both the contextual and the lin-
guistic level. Mediated reference, on the other hand, relates solely to structures of the
internal database, for which reason the speaker-hearer interacts with the task environ-
ment at the linguistic level alone.

The following schema of immediate reference shows CURIOUS’ linguistic and con-
textual interaction with the current task environment:

4.3.2 INTERNAL AND EXTERNAL ASPECTS OF IMMEDIATE REFERENCE

In this analysis, reference is reconstructed as a purely cognitive procedure, without
any relation between the external sign [1] and its external referent [2]. Language

5 Translated from German unmittelbar (immediate) and mittelbar (mediated). Wahrig
(1986/1989) defines unmittelbar as ‘ohne örtl. od. zeitl. Zwischenraum’ (without spatial
or temporal distance).

6 Immediate reference may occur outside the communication prototype 3.1.2, for example,
when a hearer finds a note on her desk, saying: Have you found the cookies in the right-hand
drawer?

7 For example, when speaker and hearer talk about the person of J.S. Bach (1685–1750), they
refer to a contextual structure for which there is no counterpart in the current real world.
Another form of mediated reference is CURIOUS’ reference to objects in a state which was
current in the past, as in How many red triangles did you find yesterday?
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meanings are treated solely as mental constructs in the cognition of the language
users.

The reason why such a cognitive analysis of reference has been rejected in analytic
philosophy is the irrational fear that without an external reference relation (as shown
in 4.2.1) cognitive agents might take the liberty to attach their own ‘private’ mean-
ings to the surfaces of natural language.8 There is no cause for concern, however: the
alleged misuse is never committed because it would break the most elementary func-
tional principle of communication, namely the conventional connection between the
surface and its meaning.

For example, anyone who decides to use the word table for label and vice versa,
should not be surprised if unprepared partners do not understand. Furthermore, if
concerned partners were to catch up and join the game, this would amount to a highly
local (and usually temporary) change in the convention-based connection between a
language surface and its meaning. At any rate, postulating an external ‘real’ relation
between a language expressions and its referent is not effective and does not contribute
to making the meanings of language “objective” or “real.”

The conventions connecting language surfaces to their literal (lexical) meanings
have to be learned (i.e., agent-internally established) by every member of the language
community. The conventions are maintained by their constant use and whoever does
not master them has a problem with communication.

In addition to the notion of literal meaning as a property of expression types, there
is the notion of speaker meaning as a property of utterances, i.e., actions in which
tokens of language expressions are being used. These two notions of meaning apply
to two different kinds of phenomena.9 They are equally legitimate and equally neces-
sary to explain the functioning of natural language. For the sake of clear and concise
terminology, we call the literal meaning of language expressions meaning1, and the
speaker meaning of utterances meaning2.

The functional connection between meaning1 and meaning2 is described by the first
principle of pragmatics, called PoP-1 for short.10

8 These concerns underlie the laborious arguments guarding against possible accusations of
‘psychologism’ in the writings of Frege, among others.

9 One might argue that Wittgenstein concentrated on the first notion in his early (1921)
work and on the second notion in his late (1953) philosophy. Rather than functionally
integrating expression meaning into utterance meaning, as in PoP-1 (4.3.3), Wittgenstein
opted to abandon his first approach. See also the discussion of ordinary language philos-
ophy as exemplified by Grice in Sect. 4.5 and the discussion of semantic ontologies in
Chap. 20.

10 A preliminary version of PoP-1 may be found in Hausser (1980), where the distinction
between meaning1 and meaning2 is already used. In CoL, p. 271, the first principle is
published as one of altogether seven principles of pragmatics (see 5.3.3, 5.4.5, 6.1.3, 6.1.4,
6.1.5, and 6.1.7).
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4.3.3 FIRST PRINCIPLE OF PRAGMATICS (POP-1)

The speaker’s utterance meaning2 is the use of the sign’s literal meaning1

relative to an internal context.

The meaning1 (concept type) of an expression exists independently of any contextual
substructures (concept tokens) that might match it. Conversely, the contextual sub-
structures exist independently of any corresponding meaning1 of the language.11 The
meaning2 derived by the hearer is nevertheless called the speaker meaning because the
hearer’s interpretation is successful only if the speaker’s subcontext is reconstructed
correctly.12

4.4 Frege’s Principle

A clear distinction between meaning1 and meaning2 allows us to strictly maintain Fre-
ge’s principle in the syntactic and semantic analysis of natural language. This principle
is named after Gottlob FREGE (1848–1925), mathematician, philosopher, and one of
the founders of modern mathematical logic. Though it was not stated explicitly in
Frege’s writings, the principle may be formulated as follows:

4.4.1 FREGE’S PRINCIPLE

The meaning of a complex expression is a function of the meaning of its parts
and their mode of composition.

That the meaning of the parts influences the meaning of the whole is demonstrated by
the comparison of the syntactically similar sentences a and b:

a. The dog bites the man
b. The dog bites the bone

11 For example, the meaning1 of the word square defined in 4.2.2 is a concept type which
exists independently of any possible referents, in either the agent-internal context or the
agent-external task environment. Correspondingly, the square objects in the world and their
reflexes in the cognitive agents’ context do not depend on the existence of a word with
a corresponding meaning1 – as demonstrated by the nonlanguage version of CURIOUS in
Chap. 3.

This independence between concept types and corresponding concept tokens holds only
for the secondary use of concept types as language meanings1 which are lexically bound
(by convention) to the surface types of symbols, as shown in 4.2.2. In their primary function
as contextual types for certain parameter constellations, in contrast, concept types are the
precondition for the derivation of concept tokens (3.3.5).

12 See the definition of successful communication in 4.5.5 as well as the schemata of language
interpretation in 5.4.1 and production in 5.4.2.
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The sentences a and b have different meanings because they differ in one of their
parts (i.e., the respective last word).

That the syntactic composition influences the meaning of the whole is demonstrated
by the following sentences a and a’, which are composed from exactly the same word
forms (parts):

a. The dog bites the man
a’. The man bites the dog

The sentences a and a’ have different meanings because they differ in their mode of
composition (exchange of the nouns dog and man).

Frege’s principle is intuitively obvious, but it has often been misunderstood. This is
caused by a failure to clearly decide whether the notion of ‘meaning’ should be the
meaning1 of expressions or the meaning2 of utterances.

Consider, for example, the meaning1 of The weather is beautiful! This expression
may be used literally on a sunny summer day or ironically on a dark, wet day in
November (northern hemisphere). In the second case, the meaning2 may be para-
phrased as The weather is disgusting. Thus, one sign (type) is related in two different
utterances to two different contexts of use, resulting in two different meanings2.

If Frege’s principle is applied – erroneously – to a meaning2 (e.g., what has been
paraphrased as The weather is disgusting in the above example), then the meaning of
the whole does not follow from the meaning of the parts (i.e., the words The weather
is beautiful). Examples of this type have been used repeatedly to cast Frege’s principle
into doubt. In reality, however, these apparent counterexamples are fallacious because
of confusing meaning1 and meaning2.

If Frege’s principle is applied – correctly – to meaning1, then it serves to character-
ize the functional relation between syntax and semantics: by putting together the word
surfaces in the syntax, the associated meanings1 are composed simultaneously on the
level of the semantics. Thus, the meaning of complex expressions is derived composi-
tionally via the composition of word forms whose surface and meaning1 are in a fixed
constellation (4.2.2). A completely different matter is the use of a complex meaning1

relative to a context. This aspect lies entirely outside Frege’s principle, namely in the
domain of pragmatics, which is the theory of correlating the meaning1 of language
and the context of use.

Our standard interpretation of Frege’s principle implies that two complex expres-
sions with different surfaces must have different meanings1. Correspondingly, two
complex expressions with the same surface must have the same meaning1.

4.4.2 STANDARD INTERPRETATION OF FREGE’S PRINCIPLE
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There are two apparent exceptions to the standard interpretation, however, namely
syntactic13 ambiguity and syntactic paraphrase.

A surface is called syntactically ambiguous if it can be assigned two or more
meanings1. For example, the adjective good in

They don’t know how good meat tastes

can be interpreted as an adverbial modifying taste or as an adnominal modifying meat.
These alternative syntactic analyses come out quite clearly in the intonation.

Conversely, different surfaces constitute a set of syntactic paraphrases if their
meanings1 turn out to be equivalent. For example, the sentences

The dog bit the man (active)
The man was bitten by the dog (passive)

may be considered to have equivalent meanings1.
As apparent exceptions to the standard interpretation of Frege’s principle, syntactic

ambiguity and paraphrase may be analyzed superficially as follows:

4.4.3 APPARENT EXCEPTIONS (Incorrect Analysis)

In the representation of ambiguity, two different meanings1, A and A’, seem to have
the same surface, while in the representation of paraphrase two different surfaces seem
to have the same meaning1. Both representations seem to disagree with the standard
interpretation 4.4.2 of Frege’s principle.

However, for a proper understanding of Frege’s principle we must recognize the
distinction between an unanalyzed and a grammatically analyzed surface. Consider
the following simplified example:

4.4.4 AMBIGUOUS UNANALYZED SURFACE AND ITS ANALYZED SURFACES

unanalyzed surface:
They don’t know how good meat tastes

analyzed surface, reading 1:
They don’t know how goodadn meat tastes

analyzed surface, reading 2:
They don’t know how goodadv meat tastes

13 See Sect. 6.5 for a distinction between syntactic, semantic, and pragmatic ambiguities.
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Clearly, only the unanalyzed surface is ambiguous, while the analyzed surfaces are
disambiguated by the grammatical subscripts of goodadn and goodadv.

While syntactic ambiguity applies only to unanalyzed surfaces, Frege’s principle
applies only to analyzed surfaces. Thus, 4.4.3 must be reanalyzed as follows:

4.4.5 SYNTACTIC AMBIGUITY (Correct Analysis)

As a property of the unanalyzed surface, syntactic ambiguity is outside of the domain
of Frege’s principle; therefore syntactic ambiguity is no exception to its standard in-
terpretation .

Another important aspect which 4.4.3 fails to express is that the meanings1 of differ-
ent complex surfaces can at best be equivalent, but never identical. In arithmetic, for
example, no one in his right mind would express the semantic equivalence of 2+4 and
3 + 3 in terms of an identical ‘underlying form’ (e.g., 6). Instead, the correct way of
treating paraphrase is to show the equivalence of the respective meaning1 structures.

4.4.6 SYNTACTIC PARAPHRASE

According to the correct analysis, paraphrases are no exception to the standard inter-
pretation of Frege’s principle: even though the meanings1 turn out to be equivalent,
they are not identical (Sect. 23.4).14

4.5 Surface Compositionality

In its standard interpretation, Frege’s principle corresponds to the principle of surface
compositionality. 15

14 The need to distinguish between identity and equivalence has been a topic of philosophy
at least since the Middle Ages. A classic treatment of this subject as applied to intensional
contexts (Sects. 20.1 and 20.2) is Barcan-Marcus (1960).

15 The SC-I principle was first described in Hausser (1978). As shown in SCG, it may be inter-
preted formally as restricting Montague’s homomorphism condition regarding the relation
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4.5.1 SURFACE COMPOSITIONALITY I (SC-I PRINCIPLE)

An analysis of natural language signs is surface compositional if it uses only
concrete word forms as building blocks, such that all syntactic and semantic
properties of a complex expression derive systematically from (i) the lexical
properties of the isolated word forms and (ii) their standard syntactic-semantic
composition.

For linguistic analysis, surface compositionality has far-reaching methodological,
mathematical, and functional consequences:

– Methodology: syntactic analyses are maximally concrete because no kind of zero
surface or underlying form may be used;

– Mathematics: syntactic and semantic analyses are of the lowest complexity (12.5.7
and 21.5.2, respectively);

– Function: the internal matching between meaning1 and context is extended from
single words (4.2.2) to the systematic syntactic-semantic combination of expres-
sions.

The principles of internal matching and surface compositionality – represented by
the letters IM and S, respectively, in the SLIM acronym – presuppose each other
in the following way. Internal matching is a precondition for a strictly composi-
tional analysis in syntax and semantics, because it moves all aspects of meaning2

into the pragmatics, where they belong. Conversely, surface compositionality pro-
vides the systematically derived meaning1 needed for internal matching with the con-
text.

While functionally integrated into the mechanism of natural language communi-
cation, surface compositionality is primarily a methodological standard for ensur-
ing concreteness in the empirical analysis of natural language syntax and semantics.
To show the consequences of violating this standard, let us consider two examples,
namely generative grammar within nativism, and speech act theory within ordinary
language philosophy. A third example from yet another tradition is Montague gram-
mar; for a detailed analysis see SCG.

Violating Surface Compositionality: EXAMPLE I
Generative grammar within nativism began with transformational grammar (TG).
TG dominated theoretical linguistics between 1957 and 1981, and is still influen-
tial in current theories16 – protestations to the contrary notwithstanding. Transforma-

between a categorial syntax and a formal semantics based on a typed lambda calculus. The
relation between the SC-I principle and the mathematical notion of a homomorphism is
described in Sect. 21.3, in which the informal, intuitive version of 4.5.1 is supplemented by
the formal variant SC-II (21.3.6).

16 A description of the post-transformational systems of GB, LFG, and GPSG may be found
in Sells (1985). Yet another variant of nativism is HPSG as the continuation of GPSG.
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tional grammar aims at characterizing the innate linguistic knowledge of the speaker-
hearer.

In TG, deep structures defined as context-free constituent structures (Chap. 8) are
mapped to surface structures by means of transformations. Since Katz and Postal
(1964), deep and surface structures have been assumed to be semantically equivalent,
i.e., the transformations are ‘meaning preserving.’

The correlation between semantically equivalent deep and surface structures in TG
is illustrated by the following examples:

4.5.2 EXAMPLES OF ‘CLASSICAL’ TRANSFORMATIONS

DEEP STRUCTURE: SURFACE STRUCTURE:

Passive:
Peter closed the door ⇒ The door was closed by Peter

Do-support:
Peter not open the door ⇒ Peter didn’t open the door

Reflexivization
Peteri shaves Peteri ⇒ Peter shaves himself

There-insertion
A hedgehog is in the garden ⇒ There is a hedgehog in the garden

Pronominalization
Peteri said that Peteri was tired ⇒ Peter said that he was tired

Relative clause formation
Peter [Peter was tired] ⇒ Peter, who was tired

Main clause order in German
Peter die Tür geschlossen hat ⇒ Peter hat die Tür geschlossen

Object raisinga

Peter persuaded Mary [Mary sleep] ⇒ Peter persuaded Mary to sleep

Subject-raising
Peter promised Mary [Peter sleep] ⇒ Peter promised Mary to sleep

aA lexical treatment of so-called subject raising and object raising may be found
in SCG, p. 254.
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The transformational derivation of surface structures from deep structures has no func-
tional role in communication.17 Instead, transformations are intended to express lin-
guistic generalizations at the level of competence.18

Transformations violate surface compositionality because they treat the concrete
parts of the surface and their mode of composition as irrelevant for the resulting mean-
ing. The properties distinguishing a surface from its semantically equivalent deep
structure have been belittled as syntactic sugar.

TG’s violation of surface compositionality is illustrated by the passive sentence

The door was closed by Peter.

Here transformations change the word order (mode of composition) on the way from
the deep structure to the surface. Furthermore, the word forms was and by are not
treated as meaningful elements in their own right, but smuggled into the surface by
transformations (Sect. 21.3).

From the viewpoint of surface compositionality it is therefore no surprise that the
presumed meaning equivalence between active and passive has turned out to be spu-
rious. For example, there is general agreement that the active sentence

Everyone in this room speaks at least two languages

and the corresponding passive sentence

At least two languages are spoken by everyone in this room

differ in meaning. The passive has the dominant reading that there are two languages
(e.g., English and French) which everyone speaks. The active only says that each per-
son speaks two languages, which may differ from person to person.19 Because of the
lack of meaning equivalence illustrated by these examples, the passive transformation
was later abandoned in nativist grammar.

The purpose of transformations was to characterize the innate human language fac-
ulty. There is a general law of nature, however, that the form of innate structures
follows their function. For example, in an aquatic bird such as a duck the form of the
feet is clearly innate. This innate structure can be described in many different ways,

17 Some followers of Chomsky have recognized this as a weakness. However, their belated
attempts to provide transformations with a genuine functional role have not been successful.
Chomsky has always rejected such attempts as inappropriate for his nativist program (e.g.,
Chomsky 1965, p. 9).

18 Transformations were later replaced by similar mechanisms. When asked in 1994 about the
frequent, seemingly radical, changes in his theories, Chomsky pointed out that the ‘lead-
ing ideas’ had never changed (personal communication by Prof. Dong-Whee Yang, Seoul,
Korea 1995). See also Chomsky (1981), p. 3, in the same vein.

19 The surface compositional treatment is based on separate derivations of the active and the
passive. If they happen to be paraphrases, this may be expressed by establishing semantic
equivalence on the level of meanings1 (4.4.6).
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but its scientific analysis in biology must explain the relation between the specific
form (webbed toes) and the specific function (locomotion in water by paddling).

The same holds for innate cognitive structures. In particular, the human language
capacity may be described in many different ways, but its scientific analysis in linguis-
tics must explain the relation between the specific form of natural language surfaces
and their specific function in the time-linear coding and decoding of content.

There may be innate structures whose function has either not yet been discovered,
is of seemingly little importance (as the wing pattern of butterflies), or has been lost
during evolution (as in the rudimentary pelvis bones of whales). Natural language
communication, however, is neither a minor nor a lost function.

Consequently, any structure alleged to be part of the innate human language faculty
is implausible if it cannot be demonstrated to have a functional role in the mecha-
nism of natural communication. We formulate this conclusion as a cognitive variant
of Ockham’s razor – a rule of science named after William of OCKHAM (1270–1347).

4.5.3 COGNITIVE VARIANT OF OCKHAM’S RAZOR

Entities or components of grammar should not be postulated as innate if they
have no clearly defined function within natural communication.

The cognitive razor applies to transformational grammar as well as to all later vari-
ants of nativism including LFG,20 GPSG,21 and HPSG.22 Like transformational gram-
mar, their linguistic generalizations are nonfunctional with respect to communication
and inherently in violation of surface compositionality (21.3.4 and 21.3.5). It is no
accident that their computational complexity turned out to be similar to that of trans-
formational grammar (Sect. 8.5), namely computationally intractable.

Violating Surface Compositionality: EXAMPLE II
A second example of a non-surface-compositional approach is the definition of mean-
ing by Paul GRICE (1913–1988). It is in the tradition of Ludwig WITTGENSTEIN’s
(1889–1951) ordinary language philosophy and John Langshaw AUSTIN’s (1911–
1960) speech act theory, specifically Wittgenstein (1953) and Austin (1962).23 This
philosophical tradition has a considerable following because it provides an intention-

20 Bresnan (ed.) (1982).
21 Gazdar et al. (1985).
22 Pollard and Sag (1987, 1994).
23 According to Levinson (1983), pp. 227f.

there are strong parallels between the later Wittgenstein’s emphasis on language us-
age and language-games and Austin’s (1962:147) insistence that “the total speech act
in the total speech situation is the only actual phenomenon which, in the last resort,
we are engaged in elucidating”. Nevertheless Austin appears to have been largely
unaware of, and probably quite uninfluenced by, Wittgenstein’s later work, and we
may treat Austin’s theory as autonomous.
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based alternative to the logical definition of meaning in terms of truth conditions
(Chaps. 19–21).

4.5.4 DEFINITION OF MEANING BY GRICE

Definiendum: U meant something by uttering x.
Definiens: For some audience A, U intends his utterance of x to produce in A some
effect (response) E, by means of A’s recognition of the intention.24

The speaker (utterer) U conventionally uses x with a certain intention. Given a token
of x, the hearer (audience) A recognizes the intention because A has gotten used to as-
sociating x with this particular intention type of U. Knowledge of the type enables the
hearer A to recognize the intention of the speaker U, because the speaker habitually
intends for the sentence to have a certain effect.

In this way, the sentence meaning is defined as the type of a convention, while the
corresponding utterance meanings are defined as tokens of this type. By reducing
sentence meaning to a conventional habit,25 an explicit representation of literal word
meanings and their composition based on syntactic analysis is avoided.

As has been pointed out repeatedly,26 however, Grice’s construction is not suitable
to explain the evolution of natural language communication. How are the sentence
meanings (types) supposed to originate in the language community so that the corre-
sponding utterance meanings (tokens) can have their intended effect? For the hearer,
the type must already exist as a convention in order to be able to recognize a corre-
sponding token. The point is that convention cannot be used to establish a certain type
of intention, because for starting the convention by recognizing the first token, the
type must already be in place.

Another problem for Grice is nonstandard uses of language, such as metaphor or
irony. After all, tokens of a purely convention-based sentence meaning can only be
recognized by the audience if they comply with the standard, habitual use.

That Austin, who was 22 years younger than Wittgenstein, was “largely unaware” of
Wittgenstein’s writings, is attributed by Levinson to their teaching at different universi-
ties: Austin was at Oxford and Wittgenstein 66 miles away at Cambridge. The train once
connecting the towns via Bletchley was known as the “brain line.”

24 Grice (1957, 1965).
25 This reduction is epitomized by ordinary language philosophy’s imprecise and misleading

formula

MEANING IS USE.

The SLIM theory of language is also based on use, but on the use of literal expres-
sion meanings1 relative to a context of interpretation, resulting in the speaker’s utterance
meaning2 (PoP-1, 4.3.3).

26 See for example Searle (1969), pp. 44f.
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In order to nevertheless handle spontaneous metaphors and other nonstandard uses,
Grice proposed another theory, based on violating conventions and known as conver-
sational implicature. Conversational implicature formulates common sense principles
for making sense of the exception to the rule.27

Thus, Grice simultaneously uses two opposite methods for realizing intentions. One
is his standard method of using conventions, the other is his nonstandard method of vi-
olating conventions. Neither method is surface compositional because neither is based
on the structure of the signs and their literal meaning1.

Conveying intentions by either conforming to habit, or violating it selectively, may
succeed for utterer U and audience A if they have been familiar with each other for the
better part of a lifetime in highly ritualized situations. For better or worse, however,
this is not language communication in the normal sense.

For explaining the interpretation of, for example, an average newspaper editorial
with ironic innuendos and metaphoric insinuations, Grice’s meaning definition does
not suffice. This is because it does not take into account the differentiated syntactic-
semantic structure of natural language signs by means of which an infinite variety of
complex meaning structures may be encoded.28

Apart from the internal problems of Grice’s theory, the notions ‘recognition of the
intention,’ ‘producing some effect,’ and ‘intending for some audience’ of his meaning
definition are not sufficiently algebraic29 for a computational model of natural com-

27 See also Austin (1962), pp. 121f.
28 Rather than applying the type/token distinction to conventions, the SLIM theory of language

applies it to recognition and action. In contextual recognition, for example, the types arise as
classes of similar parameter constellations. Once a type has evolved in this way it is used to
classify corresponding constellations of parameter values, resulting in tokens instantiating
the type.

In the extension to language, the types are used in a secondary function, namely as the
meaning1 of symbols. The interpretation of symbols is based on matching these meanings1
(concept types) with contextual referent structures (concept tokens).

The principle of internal matching between concept types and concept tokens aims from
the outset at handling the spontaneous use of language to express new meanings2 relative
to new contexts. Conventions are used only for fixing the relation between the language
surfaces and their meaning1 inside the speaker-hearer (in agreement with de Saussure’s
first law, 6.2.2).

This straightforward explanation of the primary origin and function of types and tokens
on the contextual level and the secondary functioning of the types as the word meanings1 of
language surfaces cannot be transferred to Grice’s speech act theory. The reason is that the
speaker’s intentions are not accessible to the hearer’s recognition as characteristic parameter
constellations – in contradistinction to the SLIM-theoretic meaning2 derivation based on
lexical types and contextual tokens.

29 Regarding its mathematical properties, a formal definition of Grice’s approach has yet to
be provided. What such a formalization could look like is indicated by another system
of ordinary language philosophy and speech act theory, namely that of Searle and Van-
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munication. For this, a functional theory of language is required which explains the
understanding and purposeful use of natural language in terms of explicit procedures.

This is a clear and simple goal, but for theories not designed from the outset to effec-
tively model natural language communication, it is practically out of reach. Hypothet-
ically, it could turn out in hindsight that a nonfunctional theory – such as structural-
ism, behaviorism, speech act theory, nativism, model theory, stratificational grammar,
meaning-text theory, etc. – happens to be functionally suitable anyway. This, how-
ever, would constitute a historically unique scenario: a nonfunctional theory turns out
to be of such profound correctness regarding interfaces, components, basic elements,
functional flow, etc., that it can be used by later generations as an adequate functional
model – without any need for major corrections. Such a stroke of luck has not occurred
in linguistics, and is probably without precedent in the whole history of science.

In conclusion we turn to the notion of successful communication within the SLIM

theory of language. In human-human dialog, it is impossible to determine for sure
whether the hearer understands precisely in the way the speaker intended (solipsism,
Sect. 3.2). In human-machine dialog, in contrast, direct access to the internal cognitive
processing of the machine makes it possible to reconstruct this notion objectively:

4.5.5 SUCCESSFUL NATURAL HUMAN-COMPUTER COMMUNICATION

Let L be an established natural language, SH a human speaker-hearer of L,
and CA an artificial cognitive agent (e.g., an advanced version of CURIOUS).

– Successful natural language interpretation
CA communicates successfully in the hear mode, if CA understands the
L-utterance in the way intended by SH. In technical terms this means
that CA correctly recreates the speaker meaning2 of the L-utterance in its
database. The developers of CA can verify the procedure because (i) they
themselves can understand the utterance in L, and (ii) they can view the
interpretation directly in the database of CA.

– Successful natural language production
CA communicates successfully in the speak mode, if CA formulates the
content to be transmitted in L in a way that SH can understand. This
requires technically that CA map a certain content in its database to an
L-expression from which this content may correctly be reconstructed by
SH. The developers of CA can verify the procedure because (i) they have
direct access to the database content to be communicated, and (ii) they
themselves can understand the surface in L.

derveken (1985). Depending on one’s approach, this formalization either may be shown to
be too imprecise for drawing any firm mathematical conclusions, or some particular aspect
of it may be isolated for demonstrating high complexity.
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The logical structure of the database and the procedures of reading-in (hear mode)
and -out (speak mode) are described in more detail in Chaps. 22–24.

Exercises

Section 4.1

1. What components are required to extend the nonlanguage version of CURIOUS

presented in Chap. 3 into a robot communicating in natural language?
2. In what sense are the components of language processing in CURIOUS a special-

ization of its contextual cognitive components?
3. What is the relation between natural language defined as a set of grammatically

analyzed expressions, and the cognitive structure of the speaker-hearer using the
language? Explain your answer in three to four pages.

4. Why does the construction of artificial cognitive agents have a methodological
impact on the formation of linguistic theory?

Section 4.2

1. What is the internal aspect of reference?
2. Explain the cognitive [2 + 1] level structure of reference in natural language.
3. On what basis does the hearer establish reference if the speaker uses an expres-

sion not heard before (e.g., Mars mushroom) to refer to an object not seen before?
4. Why is the handling of reference nontrivial in the case of CURIOUS, but trivial

in the case of SHRDLU? How does this difference depend on the distinction or
nondistinction between task environment and problem space?

5. In what respect can SHRDLU do more than CURIOUS in its present form? What
would be required to combine the different merits of the two systems?

Section 4.3

1. Explain which letters in the acronym of the SLIM theory of language relate di-
rectly or indirectly to the [2 + 1] level structure of reference?

2. What is the difference between immediate and mediated reference?
3. Describe the connection between reference and cognitive processing.
4. What is the difference between the speak mode and the hear mode in natural

language communication?
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5. Describe the connection between the literal meaning1 of a language expression
and the speaker meaning2 of an utterance.

6. Given that the time linearity of natural language signs is represented from left to
right, can you explain why the hearer is placed to the left of the speaker in 4.3.2
and 5.2.1?

Section 4.4
1. Who was Frege and when did he live? Explain the principle that carries his name.
2. Does Frege’s principle relate to the speaker’s utterance meaning2 or the expres-

sion’s literal meaning1?
3. Why are ambiguity and paraphrase apparent exceptions to Frege’s principle?

Which properties of the analysis make it possible to eliminate these exceptions?
Explain your answer using concrete examples of ambiguity and paraphrase.

4. Name other areas in which confusing identity and equivalence has led to prob-
lems (cf. Barcan-Marcus 1960).

5. What is the relation between the principle of surface compositionality and
Frege’s principle?

Section 4.5
1. Give nine different examples of transformations and show how they violate sur-

face compositionality.
2. Why can Frege’s principle be applied only to the deep structures of transforma-

tional grammar, but not to the surface structures?
3. What is a methodological objection to applying Frege’s principle to deep struc-

tures?
4. Describe the definition of meaning by Grice and explain why it is not suitable

for computational linguistics.
5. Compare the analysis of meaning in the theory of Grice and the SLIM theory of

language. Explain the different uses of the type/token distinction and the different
definitions of sentence and utterance meaning in the two theories.

6. What can a concrete implementation of CURIOUS as a talking robot do for an
improved understanding of natural language communication?

7. Explain the criteria for successful human-computer communication in natural
language.

8. Compare the language processing of Eliza, SHRDLU and CURIOUS.



5. Using Language Signs on Suitable Contexts

The crucial question for the interpretation of natural language is: how does the relation
between the sign and the intended referent come about? Chapters 3 and 4 investigated
this question in the context of designing the talking robot CURIOUS. This design is
simplified in that cognition and language are limited to triangles, quadrangles, and
circles of various sizes and colors. Nevertheless, CURIOUS models the general func-
tioning of natural language insofar as the system can talk not only about new objects
of a known kind, but also about situations outside its current task environment, such
as past or future situations.

This chapter investigates principles which allow the natural or artificial hearer to find
the correct subcontext such that the internal matching between the expression used and
the subcontext selected results in successful communication as defined in 4.5.5. This
leads to a further differentiation of the SLIM theory of language and an extension of
CURIOUS to general phenomena of natural language pragmatics.

Section 5.1 compares the structure of CURIOUS with Bühler’s organon model and
Shannon and Weaver’s information theory. Section 5.2 demonstrates, with an exam-
ple of nonliteral use, why the precise delimitation of the internal subcontext is cru-
cial for the correct interpretation of natural language signs. Section 5.3 describes the
four parameters which define the origin of signs (STAR) and specify the correct sub-
context for interpretation. Section 5.4 explains the function of the time-linear order
of the signs for production and interpretation, as well as de Saussure’s second law.
Section 5.5 describes the conceptualization underlying language production as an au-
tonomous navigation through the propositions of the internal database.

5.1 Bühler’s Organon Model

A theory of pragmatics analyzes the general principles of purposeful action. It de-
scribes how a cognitive agent can achieve certain goals by using certain means in
certain situations. Examples of pragmatic problems are the use of a screwdriver to
fasten a screw, the use of one’s legs to go from a to b, the scavenging of food from
the refrigerator in the middle of the night to fix a BLT and satisfy one’s hunger, or the
request that someone fix and serve the sandwich.

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_5, © Springer-Verlag Berlin Heidelberg 2014
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Depending on whether or not the means employed are signs of language, we speak
of linguistic and nonlinguistic pragmatics. Just as language recognition and artic-
ulation may be analyzed as phylo- and ontogenetic specializations of contextual
(nonlanguage) recognition and action, respectively (Sect. 4.1), linguistic pragmatics
may be analyzed as phylo- and ontogenetic specializations of nonlanguage pragmat-
ics.

This embedding of linguistic pragmatics into nonlinguistic pragmatics was recog-
nized by PLATO (427?–347 BC), who pointed out the organon character of language
in his dialog Kratylos. In modern times, the tool character (Werkzeugcharakter) of
language was emphasized by Karl BÜLER (1879–1963):

Die Sprache ist dem Werkzeug verwandt; auch sie gehört zu den Geräten des Lebens,
ist ein Organon wie das dingliche Gerät, das leibesfremde Zwischending; die Sprache
ist wie das Werkzeug ein geformter Mittler. Nur sind es nicht die materiellen Dinge,
die auf den sprachlichen Mittler reagieren, sondern es sind die lebenden Wesen, mit
denen wir verkehren.
[Language is akin to the tool: language belongs to the instruments of life, it is an
organon like the material instrument, a body-extraneous hybrid; language is – like
the tool – a mediator designed for a specific purpose. The only difference is that it
is not material things which react to the linguistic mediator, but living beings with
whom we communicate.]

Bühler (1934), p. xxi

Bühler summarized his analysis in terms of the well-known organon model. In ad-
dition to the function of language representation, the organon model includes the
functions of language expression and language appeal:

5.1.1 BÜHLER’S ORGANON MODEL

REPRESENTATION refers to the language-based transfer of information. EXPRES-
SION refers to the way the transmitter produces the sign. APPEAL refers to the way
the sign affects the receiver beyond the bare content of the sign.

At first glance the relation between the organon model and the CURIOUS mod-
el (4.1.3) is not obvious. This is because the organon model describes the commu-
nication prototype (3.1.2) from the viewpoint of an external observer – like 4.2.1.
The CURIOUS model, in contrast, describes the internal mechanism of natural lan-
guage communication. As a consequence, the organon model is limited to immediate
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reference, while the CURIOUS model can also handle mediated reference (4.3.1) to
subcontexts of past, future, and other nonactual modalities.

Upon closer investigation, however, the following correlations between the organon
model and the CURIOUS model may be established. The function of expression
in 5.1.1 is to be located in component 5+ (language synthesis) of 4.1.3. The func-
tion of appeal is to be located in component 1+ (language recognition). The function
of representation is performed by means of lexical, syntactic, and semantic compo-
nents in the language-based database structure 2+ and interpreted in relation to the
contextual database structure 2.

Thus, the organon model and CURIOUS are compatible, though the organon model
applies only to the communication prototype of 3.1.2, and is limited to an external,
noncognitive viewpoint. This limitation is reflected in Bühler’s terminology: the no-
tions transmitter and receiver are more appropriate for the transmission of surfaces
(signals) than for modeling the cognitive processing in the speak and the hear mode.

The mathematical theory of signal transmission was presented in 1949 by Shannon
and Weaver as information theory – 15 years after Bühler’s ‘Sprachtheorie.’ Informa-
tion theory investigates the conditions under which the transmission of electric and
electronic signals is of sufficient quality. Central notions of information theory be-
sides transmitter and receiver are the bandwidth of the channel, the redundancy and
relative entropy of the codes, and the noise in the transmission.

The laws of information theory hold also in everyday conversation, but impairments
of the transmission channel such as background noises, slurring of speech, hearing
loss, etc., are hardly components of the natural language communication mechanism.
The latter must be based on a model of cognitive agents – which requires the definition
of interfaces, components, surface-meaning mappings, etc., and goes far beyond the
long-distance transmission and reception of surfaces.1

5.2 Pragmatics of Tools and Pragmatics of Words

A theory of nonlinguistic pragmatics must describe the structure of the tools, of the
objects to be worked on, and of the user’s strategies in applying a tool to an object
in order to realize a certain purpose. Analogously, a theory of linguistic pragmatics
requires an explicit definition of meaning1 (tool), of the interpretation context (object
to be worked on), and of the strategies for relating a meaning1 and a context such
that the intended meaning2 is communicated. Just as a tool is positioned at a specific

1 Nevertheless there have been repeated attempts to glorify the mechanics of code transmis-
sion into an explanation of natural communication. A case in point is Eco (1975), whose
theory of semiotics within the framework of Shannon and Weaver’s information theory be-
gins with the example of a buoy which ‘tells’ the engineer about dangerous elevations of the
water table. Other cases are Grice’s (1957) ‘bus bell model’ and Dretske’s (1981) ‘doorbell
model.’
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spot of the object to be worked on and then manipulated in a purposeful way, a suit-
able meaning1 is positioned relative to a certain subcontext in order to represent it
linguistically (speak mode) or to insert it into the proper subcontext (hear mode).

The analogy between an external tool like a screwdriver and a cognitive tool like
the word table shows up in their respective literal and nonliteral uses. While the ‘lit-
eral use’ of a screwdriver consists in the fastening and unfastening of screws, it also
has a multitude of ‘nonliteral uses,’ such as for punching holes into juice cans, as a
doorstop, as a paperweight, etc. Because these nonliteral uses depend on the momen-
tary purpose and the properties of the current context, it is impossible to provide a
valid enumeration2 of all the possible uses (i.e., all the different possible instances of
meaning2) of a screwdriver.

Instead the user infers the most effective application of the tool for each new context
and for each new purpose via general principles of pragmatics. These refer to (i) the
structure of the tool with its well-known shape and properties of material (constituting
the screwdriver’s meaning1) and (ii) the current properties of the object to be worked
on (constituting the ‘context of use’).

By analogy, a word like table may be used not only to refer to prototypical tables.
Assume that the hearer is in a room never seen before with an orange-crate in the
middle. If the speaker says Put the coffee on the table!, the hearer will understand
that table refers to the orange-crate. Given this limited context of use, the minimal
meaning1 of the word table best fits the structure of the orange-crate (best match).

5.2.1 NONLITERAL USE OF THE WORD table

However, if a prototypical table were placed next to the orange-crate, the hearer would
interpret the sentence differently, putting the coffee not on the orange-crate, but on the
table. This is not caused by a change in the meaning1 of table, but by the fact that the
context of use has changed, providing an additional candidate for best match.

The principle of best match can only function properly if the choice of possible
candidates is restricted. Therefore the selection and delimitation of the subcontext is
crucial for the successful interpretation of natural language. This leads to a central
question of linguistic pragmatics:

2 This is another problem for the speech act theory of Austin, Grice, and Searle (Sect. 4.5).
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How does the speaker code the selection and delimitation of the subcontext
used into the sign and how can these be correctly inferred by the hearer?

The internal database of a speaker-hearer comprises all the episodic and theoretical
facts accumulated in the course of a lifetime. To correctly find the small, delimited
subcontext required for each interpretation of language in this huge database is not
trivial. It is particularly challenging in the case of mediated reference (4.3.1), in which
the context of use does not correspond to the current task environment.

5.3 Finding the Correct Subcontext

As an example of mediated reference consider a postcard, i.e., a sign whose places
of origin and of interpretation are far apart in time and space. On a beach in New
Zealand on a hot day in February 2013, the ‘hearer’ Heather is reading a postcard
with the Statue of Liberty on one side and the following text on the other:

5.3.1 POSTCARD EXAMPLE

New York, December 1, 2012
Dear Heather,
Your dog is doing fine. The weather is very cold. In the morning he played in the
snow. Then he ate a bone. Right now I am sitting in the kitchen. Fido is here, too. The
fuzzball hissed at him again. We miss you.

Love,
Spencer

Which structural properties of the sign enable Heather to select from all her stored
knowledge the one subcontext which is correct for the interpretation of this text?

Like all human artifacts the postcard (as a handwritten sign) has a point of origin.
In signs this origin is defined by the following parameters:

5.3.2 PARAMETERS OF ORIGIN OF SIGNS (STAR)

S = the Spatial place of origin
T = the Temporal moment of origin
A = the Author
R = the intended Recipient.

The parameters S, T, A, and R have their values defined automatically during produc-
tion and constitute the STAR of a sign.3 All meaningful utterances have their unique
STAR which is a necessary property of sign tokens.

3 Following a suggestion by Brian MacWhinney, Carnegie Mellon University, in 2000,
the earlier naming convention of ‘STAR point’ (Hausser 1989a) is changed to simply
‘STAR’.

In some respects the STAR resembles Bühler’s (1934) notion of origo. However, the
STAR is defined as a property of the (token of the) sign, whereas the origo seems to refer
to the spatio-temporal coordinates and gestures of the speaker-hearer during the utterance.
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The spatio-temporal location specified by a STAR may be interpreted rather loosely.
Even in spoken language the temporal origin is strictly speaking an interval rather than
a point. In writing, this interval may be of considerable length.

Apart from the parameters of origin of a sign there are the parameters of its inter-
pretation. The latter are called STinter because they consist of (1) a spatial location S
and (2) a moment of time T. Just as the STAR is fixed automatically by the origin, an
STinter is defined whenever a sign is interpreted.4

While the STAR is unique for any given sign (token) and defined once and for all,
the number of its possible STinter is open. For example, a postcard which is lost in the
mail may not have any STinter at all, whereas a letter published in The New York Times
will have many STinter.

The STinter is known to each single hearer or reader: it equals his or her current
circumstances. Yet the correct interpretation of a sign depends mostly on the knowl-
edge of its STAR, which may be difficult to infer.5 Consider a clay tablet found in an
archaeological dig in Mesopotamia. The STinter of the various interpretation attempts
by various scientists make no difference as to what the tablet really means. What is
crucial are the place of origin (S), the correct dynasty (T), the writer (A), and the
addressee (R) of the clay tablet.6

4 Many different constellations between STAR and STinter are possible. For example, in
someone talking to himself the S and T parameters of the STAR and STinter are identical.
Furthermore, the A value and the R value of the STAR are equal.

If two people talk to each other in the situation of the communication prototype, the T
parameter values in the STAR and STinter are practically the same, while the S values are
significantly different. Furthermore, in a dialog the R value of the STAR equals the hearer,
while in the case of someone overhearing a conversation, this person will be distinct from
the R value of the STAR.

5 In logical semantics the speaker – and thus the origin of signs – is not formally treated. For
this reason, the model-theoretic interpretation can only be defined relative to an (arbitrary)
STinter. This is of no major consequence in the case of eternally true sentences. In the
extension of logical semantics to contingent sentences, however, the formal interpretation
relative to STinter is plainly in conflict with the empirical facts of communication.

Similarly, speech act theory has attempted to represent the speaker’s intention and action
in terms of performative clauses like I request, I declare, etc. These are subscripted to
the language expression and treated as part of the type (sentence meaning). Thereby the
utterance-dependent interpretation of I, of the addressee, of the moment of time, and of the
place is left untreated. This may seem acceptable for the communication prototype (3.1.2),
but for the interpretation of a postcard, a theoretical treatment of the STAR as a property of
the utterance cannot be done without.

6 The importance of the STAR is also shown by the question of whether the tablet is real or
fake. While the glyphs remain unaffected by this question, the different hypotheses regard-
ing authenticity lead to different interpretations. Another example is an anonymous letter
whose threatening quality derives in large part from the fact that it specifies the recipient R
without revealing the author A.
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Only face-to-face communication – as in the communication prototype – provides
the hearer with the STAR directly. Therefore, the pragmatic interpretation of natural
language is especially easy in those situations. In contrast, signs not intended for face-
to-face communication must ensure their correct contextual positioning by an explicit
or implicit specification of their STAR.

The role of the STAR is described by the second principle of pragmatics:

5.3.3 SECOND PRINCIPLE OF PRAGMATICS (POP-2)

The STAR of the sign determines its primary positioning in the database by
specifying the entry context of interpretation.

The need for primary positioning is especially obvious in the case of mediated refer-
ence, as in Heather’s interpretation of Spencer’s postcard.

5.3.4 PRIMARY POSITIONING IN TERMS OF THE STAR

Heather’s current situation is stored at the STinter: sitting on the beach she is looking
at the postcard. The signs of the postcard, however, are not matched to the subcontext
of the STinter, but rather to a subcontext called STprop, which is determined by means
of the STAR.

Accordingly, Heather does not object to the statement The weather is very cold by
pointing to the hot New Zealand summer. Based on the STAR, she knows that the
words of the postcard refer to New York in winter.

Similarly, when the nosy landlady secretly reads Spencer’s postcard she is not sur-
prised by Your dog is doing fine, given that she has no dog. Based on the STAR, she
knows full well that the words of the postcard refer to Heather’s dog.

For the hearer, PoP-2 determines the subcontext where the interpretation begins.
But it makes no demands on its contents, which depend solely on the person who
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interprets the sign. A subcontext of interpretation may contain personal memories,
factual information, etc., but it may also be completely empty.

In Heather’s case, the subcontext Spencer’s apt. in New York on December 1, 2012
is richly filled insofar as Heather is Spencer’s friend and knows his apartment from
personal experience. In contrast, the corresponding subcontext of Heather’s landlady
is initially a new, empty file. Yet the landlady’s interpretation is successful insofar as
she reads the postcard text into this file, making sense of it via her acquaintance with
Heather (pragmatic anchoring).

The function of the STAR is twofold. On the one hand, it regulates the reference to
content already present (as in the case of Heather). On the other hand, it is the basis
for integrating new information so that it may be retrieved correctly on later occasions
(as in the case of the landlady, but also in the case of Heather).

Thus the landlady may smile knowingly when Heather later announces an impend-
ing visit from New York. This knowledge is based not only on the text of the postcard,
but also in large part on the explicitly specified STAR which allowed the landlady to
put the content into a correct subcontext.

In addition to its real STAR, a sign may also encapsulate a fictitious one, as in the
novel Felix Krull, which begins as follows.

Indem ich die Feder ergreife, um in völliger Muße und Zurückgezogenheit – gesund
übrigens, wenn auch müde, sehr müde. . .

[While I seize the pen in complete leisure and seclusion – healthy, by the way –
though tired, very tired. . . ]

Here the fictitious STAR is not even specified explicitly, but filled in inconspicuously,
piece by piece, by the author in the course of the text.7

Signs which provide their STAR explicitly and completely can be correctly inter-
preted by anyone who speaks the language. This is shown by the possibility of nonin-
tended interpretations, as illustrated by Heather’s nosy landlady.

Signs which do not provide their STAR, such as an undated and unsigned letter,
require at least a hypothesis of the likely STAR for their interpretation. The reader can
always provide a tentative STAR, but the less there is known about the real one, the
less sense he can make of the content coded by the writer.

5.4 Language Production and Interpretation

The STAR of a sign provides the entry context for the speaker’s language production
and the hearer’s interpretation. From there, however, an unlimited variety of other

7 In a novel, the real STAR may be of little or no interest to the average reader. Nevertheless
it is explicitly specified. The name of the author, Thomas Mann, is written on the cover. The
intended recipient is the general readership as may be inferred from the text form ‘book’.
The year of the first printing and the place of publication are specified on the back of the
title page.
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subcontexts may be accessed and traversed. The time-linear coding of the subcontexts
into language surfaces during production and their decoding during interpretation is
based on the [2+1] level structure (4.2.2) of the SLIM theory of language.

In language interpretation, the navigation through the subcontexts is controlled
by the language signs: the hearer follows the surfaces of the signs, looks up their
meanings1 in the lexicon, and matches them with suitable subcontexts.

5.4.1 SCHEMA OF LANGUAGE INTERPRETATION (ANALYSIS)

In language production, the navigation control is located in the subcontexts of the
speaker. Each content unit traversed is matched with the corresponding meaning1 of
a suitable word form. Utterance of the word form surfaces allows the hearer to recon-
struct the speaker’s time-linear navigation path.

5.4.2 SCHEMA OF LANGUAGE PRODUCTION (GENERATION)

The two schemata agree with the view that interpretation (↓) and production (↑)
are inverse vertical procedures. Nevertheless, interpretation and production have their
main direction in common, namely a horizontal time-linear structure (→).

5.4.3 THE TIME-LINEAR STRUCTURE OF NATURAL LANGUAGE SIGNS

The basic structure of natural language signs is their time-linear order. This
holds for the sentences in a text, the word forms in a sentence, and the allo-
morphs in a word form.
Time-linear means:
LINEAR LIKE TIME AND IN THE DIRECTION OF TIME.

This formulation may be regarded as a modern version of Ferdinand DE SAUSSURE’s
(1857–1913) second law.
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5.4.4 DE SAUSSURE’S SECOND LAW: linear character of signs

SECOND PRINCIPE; CARACTÈRE LINÉAIRE DU SIGNIFIANT.
Le signifiant, étant de nature auditive, se déroule dans le temps seul et a les caractères
qu’il emprunte au temps: a) représente une étendue, et b) cette étendue est mesurable
dans une seule dimension: c’est une ligne.
Ce principe est évident, mais il semble qu’on ait toujours négligé de l’énoncer, sans
doute parce qu’on l’a trouvé trop simple; cependent il est fondamental et les con-
séquences en sont incalculables; son importance est égale à celle de la première loi.
Tout le mécanisme de la langue en dépend.
[The designator, being auditory in nature, unfolds solely in time and is character-
ized by temporal properties: (a) it occupies an expansion, and (b) this expansion is
measured in just one dimension: it is a line.
This principle is obvious, but it seems that stating it explicitly has always been ne-
glected, doubtless because it is considered too elementary. It is, however, a funda-
mental principle and its consequences are incalculable. Its importance equals that of
the first law. All the mechanisms of language depend on it.]

de Saussure (1972), p. 103

The failure pointed out so politely by de Saussure in 1913 has continued until today.
C Grammar (Chap. 7) and PS Grammar (Chap. 8) are based on two-dimensional trees
called constituent structures (8.4.3), and treat surface order as the ‘problem of lin-
earization.’ Only LA Grammar (Chap. 10) uses a time-linear derivation order as the
common backbone for language production and interpretation.

The time-linear structure of natural language is so fundamental that a speaker cannot
but utter a text sentence by sentence, and a sentence word form by word form. Thereby
the time-linear principle suffuses the process of utterance to such a degree that the
speaker may decide in the middle of a sentence on how to continue.

Correspondingly, the hearer need not wait until the utterance of a text or sentence has
been finished before her or his interpretation can begin. Instead the hearer interprets
the beginning of the sentence (or text) without knowing how it will be continued.8

In spoken language, the time-linear movement of the navigation must be maintained
continuously during production and interpretation. If a speaker pauses too long, (s)he
ceases to be a speaker. If a hearer stops following the words as they are being spoken
and starts to think of something else, (s)he ceases to be a hearer.

The function of time linearity is described by the third principle of pragmatics.

5.4.5 THIRD PRINCIPLE OF PRAGMATICS (POP-3)

The matching of word forms with their respective subcontexts is incremental,
whereby in production the elementary signs follow the time-linear order of

8 Hearers are often able to continue incoming sentences, especially if the speaker is slowly
producing well-ingrained platitudes describing widespread beliefs. This phenomenon
shows again that the principle of possible continuations permeates the interpretation of
language as well.
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the underlying thought path, while in interpretation the thought path follows
the time-linear order of the incoming elementary signs.

The third principle presupposes the second. The initial step in the interpretation of a
natural language sign is to determine the entry context as precisely as possible via the
STAR (PoP-2). The next step is to match the complex sign word form by word form
with a sequence of subcontexts. PoP-3 goes beyond 5.4.3 and de Saussure’s second
law in that PoP-3 emphasizes the role of the time-linear structure for the incremental
matching between the signs’ meaning1 and the subcontexts within the [2+1] level
structure of the SLIM theory of language.

5.5 Thought as the Motor of Spontaneous Production

According to the SLIM theory of language, what is said is a direct reflection of what
is thought. Thus, the once famous motto of behaviorism

Thought is nonverbal speech

is flipped around into

Speech is verbalized thought.

Behaviorism wanted to avoid a definition of thought by attempting to reduce thought
to speech. The SLIM theory of language, on the other hand, models thought explicitly
as an autonomous navigation through the internal database.9

The navigation is implemented computationally as a focus point moving through
the concatenated propositions. Its momentary direction is controlled by (i) the con-
nections between the propositions traversed, (ii) internal contextual influences such
as hunger, (iii) external contextual influences (sensory input), and (iv) language input.

The navigation provides a basic handling of conceptualization. This notion is used
in conventional systems of natural language generation for choosing the contents to be
expressed (what to say), in contradistinction to the notion of realization, which refers
to the way in which a chosen content is represented in language (how to say it).

That the SLIM theory of language treats conceptualization as thought itself, and
realization as a simultaneous assignment of language surfaces, is in concord with the
fact that spontaneous speech is not based on a conscious choice of content or style.
A representative example of spontaneous speech is an eyewitness report after a recent
shock experience. The horrified witness’ description gushes out automatically without
any stylistic qualms or hesitation about what to say or how to say it. For better or
worse, the same is true for most situations of normal everyday life.

9 The SLIM-theoretic model of thought may be viewed as a formal realization of spreading
activation theories in cognitive psychology. Different versions may be found in Collins and
Loftus (1975), Anderson and Bower (1980), Anderson (1990), Rumelhart et al. (1986b),
and others.



98 5. Using Language Signs on Suitable Contexts

That a person will sometimes speak slowly and deliberately, sometimes fast and
emotionally, sometimes formally and politely, and sometimes in dialect or slang, is
a direct reflection of the current navigation through the subcontexts and an indirect
reflection of the internal and external factors modifying the state of the database and
thus the course of the navigation. Internal factors are the current mood and intention
of the cognitive agent, while external factors are the status of the hearer, the presence
or absence of a third party, and the events taking place at the time.

The navigation through subcontexts (i.e., the thought path) is independent of lan-
guage insofar as it often occurs without a concomitant verbalization.10 When language
is produced, however, it is usually a completely automatic process in which order and
choice of the words are a direct reflection of the underlying navigation.

Speech is irreversible. That is its fatality. What has been said cannot be unsaid, except
by adding to it: to correct here is, oddly enough, to continue.

Barthes (1986), p. 76

Even in written language the realization of time-linear navigation shows up at least
partially in that the word and sentence order are fixed. For example, Spencer decided
to describe events in their temporal order:

In the morning he played in the snow. Then he ate a bone.

In the medium of writing, the order of the two sentences can be inverted, i.e.,

*Then he ate a bone. In the morning he played in the snow.

but this would destroy the intended interpretation of then.
Alternatively Spencer could have depicted the events as follows:

In the morning Fido ate a bone. Before that he played in the snow.

This anti-temporal sequencing represents an alternative thought path through the con-
textual database and has the stylistic effect of emphasizing the eating of the bone.
Here a later inversion would likewise destroy textual cohesion.

There are also examples in which a later change of sequencing does not destroy
cohesion, but ‘only’ modifies the interpretation:

a. 1. In February, I visited the Equator. 2. There it was very hot. 3. In March, I was in
Alaska. 4. There it was very cold.

b. 3. In March, I was in Alaska. 2. There it was very hot. 1. In February, I visited the
Equator. 4. There it was very cold.

The four sentences in a and b are the same, but their order is different. The inter-
pretation differs with the orderings because there obviously refers to the subcontext
(Alaska/Equator) that was traversed most recently. This holds for both the reader and

10 Whether thought is influenced by one’s language is another question which has been hotly
debated through the centuries. According to the Humboldt-Sapir-Whorf Hypothesis the
thought of humans is indeed influenced by their respective languages.
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the writer. According to our knowledge of the world, example b is highly unlikely, yet
a sincere interpretation cannot but navigate a corresponding thought.11

In summary, the time-linear structure of natural language underlies written language
as much as it underlies spoken language. The only difference is that written signs are
more permanent than spoken ones (if we disregard recordings) for which reason

– a writer can correct and/or modify a given text without having to add more sen-
tences, and

– a reader can leaf through a text, going forward or backward, without being bound
to the linear order of the word forms.

These are additional possibilities, however, which in no way change the essential time-
linear structure of written signs.12

Exercises

Section 5.1
1. Explain the relation between nonlinguistic and linguistic pragmatics.
2. Who was Karl Bühler, and when did he live?
3. What are the three functions of language specified by Bühler’s organon model?
4. What do the CURIOUS model and the organon model have in common and how

do they differ?
5. Which components of the CURIOUS model 4.1.3 treat expression and appeal,

respectively?
6. Who first presented information theory, what are its tasks, and what are its central

notions?
7. Is information theory suitable to explain the mechanism of communication?

11 The question of trustworthiness, seriousness, etc. of a sign’s author is discussed in CoL,
pp. 280f.

12 Even hypertexts, with their various options of continuation, are designed for a time-linear
consumption by the reader. There are, however, special kinds of books, e.g., dictionaries,
in which the entries are ordered alphabetically for the sake of a specialized access (though
the entries are of a conventional time-linear structure). Characteristically, dictionaries – like
telephone books, inventory lists, bank accounts, relational databases, and other non-time-
linear language structures – are not regarded as ‘normal’ texts of natural language.
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Section 5.2
1. How does the view of language as an organon affect the theoretical development

of linguistic pragmatics?
2. Why does PoP-1 presuppose the view of language as a tool?
3. Name and explain two analogies between the use of nonlinguistic and linguistic

pragmatics.
4. Why is determining the correct context of use a central problem of linguistic

pragmatics? Is this problem addressed in linguistic mainstream pragmatics (e.g.,
Levinson 1983)?

Section 5.3
1. Explain the roles of the STAR and the STinter in the interpretation of linguistic

signs.
2. Why is it necessary for the STAR to specify also the intended recipient (exam-

ple)? Why does this not hold for the STinter?
3. How is the STAR specified in Spencer’s postcard?
4. What is the entry context and why is its specification important?
5. Is it possible to interpret a sign relative to an empty subcontext? What would be

the purpose of this?
6. Consider a lawn with the sign Keep off the grass! Define the STAR of this sign

(CoL, p. 280.)
7. The novel A Clockwork Orange is written in the first person: There was me, that

is Alex, and my three droogs. . . How does the reader distinguish between the
author Anthony Burgess and Alex? Explain the notion of an auxiliary STAR.

Section 5.4
1. Why is the [2+1] level structure of the SLIM theory of language crucial for the

interpretation and production of natural language?
2. What exactly is meant by the notion time-linear? How does it differ from the

notion linear time in complexity theory?
3. Explain the time-linear structure of natural language in terms of the speaker’s

production and the hearer’s interpretation.
4. Who was de Saussure, when did he live, and what is his second law?
5. Why does PoP-3 presuppose PoP-2?
6. Is there a difference between PoP-3 and de Saussure’s second law?

Section 5.5
1. What is the difference between spoken and written language regarding produc-

tion and interpretation? Is written language time-linear as well?
2. What is the difference in how spoken vs. written language is corrected?
3. In the production of language, is there an intermediate state which is not time-

linear?
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4. What are the three basic problems of production in constituent-structure-based
grammars? How are they avoided in the SLIM theory of language?

5. Is the late phylo- and ontogenetic acquisition of reading and writing an argument
for or against treating them as central cases of language use?

6. How deliberately are style and topic chosen in spontaneous speech?
7. How does the speaker control what she or he says?



6. Structure and Functioning of Signs

The semantic and pragmatic functioning of complex expressions is based on indi-
vidual words. These correspond to different sign kinds with different mechanisms of
reference. The classification and analysis of words as sign kinds belongs tradition-
ally in the philosophical domain of the theory of signs. For the modeling of natural
communication in computational linguistics, a theory of signs is an obvious necessity.

Section 6.1 shows with an example in telegram style that complex meanings can
be transmitted simply by means of the time-linear order and the meaning1 of the
signs, without the usual grammatical composition, and explains how the iconic, in-
dexical, and name-based reference mechanisms work. Section 6.2 describes the sign
kind symbol and how it is used by the speaker and hearer to refer. Section 6.3 inves-
tigates the phenomenon of repeating reference. Section 6.4 discusses two exceptions
to de Saussure’s first law, namely the sign kinds icon and name. Section 6.5 explains
the evolution of icons from pictures and describes the development of modern writing
systems as a gradual transition from pictures via visual icons (pictograms) to symbols.

6.1 Reference Mechanisms of Different Sign Kinds

The functioning of natural language communication as described so far is based on
the following pragmatic mechanisms:

1. The use of language expressions is handled as an internal matching between the
expression’s meaning1 and a subcontext (PoP-1, Sect. 4.3).

2. The entrance subcontext is determined by the sign’s STAR (PoP-2, Sect. 5.3).
3. In complex expressions, the reference relation between word forms and their con-

text of interpretation is based on a time-linear derivation order (PoP-3, Sect. 5.4).

PoP-1, PoP-2, and PoP-3 are rooted so deeply in the basic functioning of natural lan-
guage communication that their fundamental role shows up in each and every instance
of meaningful language production and interpretation. Even though their elementary
structure and function are “obvious, . . . it seems that stating [them] explicitly has al-
ways been neglected, doubtlessly because [they are] considered too elementary” – to
borrow de Saussure’s formulation quoted in 5.4.4 and extend it to pragmatics.

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_6, © Springer-Verlag Berlin Heidelberg 2014

103

http://dx.doi.org/10.1007/978-3-642-41431-2_6


104 6. Structure and Functioning of Signs

Based on PoP-1, PoP-2, and PoP-3, we are now at the point where the individual
signs are positioned more or less precisely opposite the correct internal subcontext.
From here our analysis may continue in two different directions. One is to describe
the horizontal relation of the individual signs to each other, i.e., the principles of time-
linear syntactic-semantic composition. The other is to analyze the vertical relation of
individual signs to the subcontext, i.e., reference. The correlation of these two struc-
tural aspects may be shown schematically as follows:

6.1.1 ALTERNATIVES OF DESCRIPTION

Of these alternatives, we choose the second, because the vertical pragmatic interpre-
tation is possible even in the case of single signs, as shown by the phenomenon of the
one-word sentence. Moreover, the horizontal syntactic-semantic composition is rather
complex in the natural languages and requires a separate, detailed analysis. This will
be provided in Parts III (Morphology and Syntax) and IV (Semantics and Pragmatics).

Ignoring for the moment the role of syntax in the pragmatic interpretation of com-
plex signs, let us begin with a special type of communication, e.g., the telegram style
and similar variants,1 in which the function of the syntax is minimal:

6.1.2 EXAMPLE WITH MINIMAL SYNTAX

Me up. Weather nice. Go beach. Catch fish. Fish big. Me hungry. Fix breakfast.
Eat fish. Feel good. Go sleep.

There is no doubt that this kind of language works. Though it is syntactically sim-
plified, even ungrammatical, it is well-suited to convey nonelementary content. This
is based solely on (i) the linear order and (ii) the meaning1 of the individual words.
A good theory of language should therefore be able to explain a fully developed syn-
tax as a refinement of communication with little or no grammar.

For this, the semantic-pragmatic functioning of individual words must be explained.
In referring expressions, analytic philosophy distinguishes the sign kinds of symbol,

1 A typical example is the simplification in the discourse with foreigners: Me Tarzan, you
Jane.
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indexical,2 and name. The SLIM theory of language explains their different reference
mechanisms in terms of their characteristic internal structures.

6.1.3 FOURTH PRINCIPLE OF PRAGMATICS (POP-4)

The reference mechanism of the sign kind symbol is based on a meaning1

which is defined as a concept type. Symbols refer from their place in a posi-
tioned sentence by matching their concept type with suitable contextual ref-
erents (concept tokens).

The reference mechanism of symbols is called iconic because the functioning of sym-
bols and icons is similar: both can be used to refer spontaneously to new objects of
a known kind. The difference resides in the relation between the meaning1 (concept
type) and the surface, which is “arbitrary” in the case of symbols, but “motivated” in
the case of icons. Examples of symbols in are the nouns weather, beach, and fish, the
verbs go, catch, and eat, and the adjectives nice, big, and hungry.

6.1.4 FIFTH PRINCIPLE OF PRAGMATICS (POP-5)

The reference mechanism of the sign kind indexical is based on a meaning1

which is defined as a pointer. An indexical refers by pointing from its place
in the positioned sentence to appropriate parameter values.

Indexical reference is illustrated by the adverbs here and now, which point to the
spatial and temporal parameter values of an utterance, respectively, and the pronouns
I and you, which point to the author and the intended recipient, respectively.3

Names have no meaning1 distinct from their surface, in contrast to symbols and in-
dexicals. Instead, the surface serves to match a corresponding marker in the cognitive
representation of the named item:

6.1.5 SIXTH PRINCIPLE OF PRAGMATICS (POP-6)

The reference mechanism of the sign kind name is based on an act of naming
which consists in adding a name-marker to the internal representation of the
individual or object in question. Reference with a name consists in matching
the name surface and the corresponding marker.4

As an example of name-based reference consider meeting a stranger who introduces
his dog as Fido. Afterwards, our internal representation of this particular dog as a

2 The term ‘indexical’ as a sign kind is distinct from the term ‘index’ used in the domain of
databases (2.1.1). Both terms have in common, however, that they are based on the notion
of a pointer.

3 As content units, indexical pointers are restricted to view-dependent representations such
as language meanings and task analyses. Symbols and names, in contrast, may be used for
representing both view-dependent and view-independent representations of content.

4 In analytic philosophy, names have long been a puzzle. Attempts to explain their function-
ing range from causal chains to rigid designators (Kripke 1972).
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contextual referent comprises not only properties like size, color, etc., but also the
name marker Fido.5

The respective structural basis of iconic, indexical, and name-based reference is
illustrated in the following schematic comparison in which the three sign kinds are
used to refer to the same contextual object, i.e., a red triangle.

6.1.6 COMPARING ICONIC, INDEXICAL, AND NAME-BASED REFERENCE

The symbol red triangle refers on the basis of the type/token relation: the concept type
matches a corresponding concept token in a limited range of contextual candidates.
The indexical it refers on the basis of pointing: the characteristic pointer points at the
referential object within an associated parameter (here, third person, i.e., everything
that is neither author nor addressee). The name R2D2 refers on the basis of a marker:
the name surface is matched with an identical marker which is part of the contextual
referent and is attached to it in an act of naming.

Names fit into the basic [2+1] level structure of the SLIM theory of language. How-
ever, while symbols and indexicals establish a fixed connection between the surface
and the meaning1, names establish a fixed relation between the name-marker and the
contextual referent. Accordingly, in names the matching is between the name surface
and the name marker (Sect. 6.4).

All three mechanisms of reference must be analyzed as internal, cognitive proce-
dures. This is because it would be ontologically unjustifiable to locate the fixed con-
nections between surface and meaning1 (symbols and indexicals) and between marker
and contextual referent (names) in the external reality.6

For explaining the phylo- and ontogenetic development of natural language it is
of interest that the basic mechanisms of iconic, indexical, and name-based reference
constitute the foundation of nonlanguage and prelanguage communication as well.
Thereby

1. nonlanguage iconic reference consists in spontaneously imitating the referent by
means of gestures or sounds,

2. nonlanguage indexical reference consists in pointing at the referent, and

5 Apart from explicit acts of naming, names may also be inferred implicitly, for example,
when we observe an unknown person being called by a certain name.

6 See Sect. 4.2 as well as the discussion of four possible semantic ontologies in Sect. 20.4.
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3. nonlanguage name-based reference consists in pointing at the referent while si-
multaneously pronouncing a name.

While largely limited to the communication prototype 3.1.2, these nonlanguage mech-
anisms of reference may be quite effective. By doing without conventionally estab-
lished surfaces, nonlanguage reference allows spontaneous communication in situa-
tions in which no common language is available.

The distinction between the different sign kinds, i.e., symbol, index, and name, is
orthogonal to the distinction between the main parts of speech, i.e., noun, verb, and
adjective, as well as to the corresponding distinction between the basic elements of
propositions, i.e., argument, functor, and modifier (3.4.1).

6.1.7 SEVENTH PRINCIPLE OF PRAGMATICS (POP-7)

The sign kind symbol occurs as noun, verb, and adjective. The sign kind in-
dexical occurs as noun and adjective. The sign kind name occurs only as noun.

The orthogonal correlation between sign kinds and parts of speech described in
PoP-77 may be represented graphically as follows:

6.1.8 RELATION BETWEEN SIGN KINDS AND PARTS OF SPEECH

The sign kind which is the most general with respect to the parts of speech is the
symbol, while the name is the most restricted. Conversely, the part of speech (and,
correspondingly, the propositional element) which is the most general with respect to
sign kinds is the noun (object), while the verb (relation) is the most restricted.

6.2 Internal Structure of Symbols and Indexicals

As signs, the symbols and indexicals of natural language have an internal structure
which is composed of the following components:

6.2.1 INTERNAL COMPONENTS OF THE SIGN KINDS SYMBOL AND INDEXICAL

– The surface is constrained by acoustic articulation, i.e., pronounceability, in the
original medium of spoken language.

7 While CoL presented preliminary versions of PoP-1 to PoP-5 as the first to fifth principle
of pragmatics, respectively, PoP-6 and PoP-7 are defined here for the first time.
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– The category reflects the combinatorial properties of the part of speech and the
inflectional/agglutinative class to which the sign belongs.

– The meaning1 reflects the conceptual structures of the internal context and/or con-
tains characteristic pointers to certain contextual parameters.

– The glue connecting surface, category, and meaning1 consists of conventions which
must be learned by each member of the language community.

The convention-based nature of the glue, particularly between surface and meaning1,
is the subject of de Saussure’s first law:

6.2.2 De Saussure’S FIRST LAW

PREMIER PRINCIPE; L’ARBITRAIRE DU SIGNE.
Le lien unissant signifiant au signifié est arbitraire, ou encore, puisque nous enten-
dons par signe le total résultant de l’association d’un signifiant à un signifié, nous
pouvons dire plus simplement: le signe linguistique est arbitraire.
[THE FIRST LAW: ARBITRARINESS OF SIGNS

The link connecting the designator and the designated is arbitrary; and since we are
treating a sign as the combination which results from connecting the designator with
the designated, we can express this more simply as: the linguistic sign is arbitrary.]

de Saussure (1972), p. 100

The arbitrariness of signs may be seen in the comparison of different languages.
For example, the symbols square of English, carré of French, and Quadrat of German
have different surfaces, but the same meaning1 (i.e., the concept type defined in 3.3.3).
Similarly, the indexicals now of English, maintenant of French, and jetzt of German
have different surfaces, but use the same indexical pointer as their meaning1.

The arbitrariness of signs may also be seen within a single language. For example,
the surface of the symbol square contains nothing that might be construed as indi-
cating the meaning1 of an equal-sided quadrangle with 90 degree angles. Similarly,
nothing in the surface of indexical now might be construed as indicating the meaning1

of a temporal pointer. Thus, the surface-meaning1 relation in the sign kinds symbol
and indexical is what de Saussure’s calls unmotivated.

In natural communication, symbols can have the following functions:

6.2.3 POSSIBLE FUNCTIONS OF THE SIGN KIND SYMBOL

1. Initial reference to objects which have not been mentioned so far (4.3.2).
2. Repeating reference to referents which have already been introduced linguisti-

cally (6.3.3 and 6.3.7).
3. Metaphorical reference to partially compatible referents (5.2.1), both in initial

and repeating reference.

These different functions are based on

– the minimal meaning1 structure of symbols (concept types), and
– the limited selection of compatible referents available in the subcontext.
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Consider, for example, the word table. The multitude of different possible referents,
e.g., dining tables, kitchen tables, garden tables, writing tables, card tables, picnic ta-
bles, operating tables, etc., of various brands, sizes, colors, locations, etc., is not part of
the meaning1 of this word. The referents arise only at the level of the internal context,
whereby, for example, different kinds of tables are distributed over the subcontexts of
the cognitive agent in accordance with previous and current experience.

Yet a minimal meaning1 structure of the word table is sufficient to refer properly,
provided that the subcontext is sufficiently limited in terms of the STAR and the time-
linear order of the sign. If there are no standard referents, a word like table can even re-
fer to an orange-crate (5.2.1). Furthermore, the speaker may differentiate the meaning1

structure of the referring expression by integrating additional symbolic content into
the sign, e.g., the table, the garden table, the green garden table, the small green gar-
den table, the round small green garden table, the round small green garden table near
the pool, etc.

Reference with a symbol will not succeed if the activated subcontext contains sev-
eral similar candidates, e.g., several prototypical tables, and the speaker fails to pro-
vide additional symbolic characterization or a pointing gesture to single out the one
intended. This problem would arise not only for an artificial cognitive agent like CU-
RIOUS, but for a human hearer as well. Cases of uncertain reference are common in
daily life. When they occur, it is normal for the hearer to request clarification.

In the hear mode, the concept type of a symbol may not only be matched with an ex-
isting concept token in a subcontext, but may also introduce a new one. For example,
when a buyer goes through a house saying, for example, living room in room1, dining
room in room2, etc., the associated properties are inserted into the respective repre-
sentations of the hearer-internal context structure. This process differs from naming
in that not just markers, but concepts are added to the internal representations:

6.2.4 CHARACTERIZING OBJECTS SYMBOLICALLY

Externally there is nothing changed in room1, but speaker and hearer can leave the
house, the town, or the country, and talk without any problem about the living room in
the context of their new house.8

8 Should the buyer and his companion decide later to make room2 into the living room in-
stead, this will require an explicit agreement to ensure the functioning of communication.
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6.3 Repeating Reference

Words exemplifying the sign kind indexical are here, now, I, and you. Their meaning1

consists of pointers at the parameters S, T, A, and R, respectively. Thus, these four
indexicals are well suited to position a sign in accordance with its STAR.

In the speak mode, the characteristic pointers of indexical words may be easily
implemented. Within a robot like CURIOUS, for example, here (S) points to the center
of the on-board orientation system, now (T) to the current value of the on-board clock,
I (A) to CURIOUS as the author of any language signs to be produced, and you (R) to
the current partner in discourse.

The pointer of an indexical word may combine with grammatical and symbolic com-
ponents of meaning which help to support and refine the process of reference. How
much symbolic support is required by an indexical for successful reference depends
on how many potential candidates are provided by the currently activated subcontext.

Indexical words which contain no additional grammatical or symbolic meaning
components are called pure indexicals. If the speaker wishes additional precision or
emphasis when using a pure indexical like here, now, and you,9 this may be expressed
compositionally as in up here, right now, you there, etc.

Examples of non-pure indexicals, on the other hand, are the first person pronouns
I, me, we, and us in English. They incorporate the symbolic-grammatical distinction
between singular (I) and plural (we), and the grammatical distinction between nomi-
native case (I, we) and oblique case (me, us). Thus, even though the pronouns of first
person in English all share the same pointer to the parameter A, they differ in their
symbolic-grammatical meaning components and are therefore not pure indexicals.

The pointing area of pronouns of third person, finally, is outside the STAR param-
eters and comprises all objects and persons that have been activated so far and are
neither the speaker nor the hearer. Depending on the subcontext, this pointing area
may be very large, for which reason gender-number distinctions in third person pro-
nouns like he, she, it, they, him, her, them are helpful, but may still not suffice to
achieve correct reference to the intended person or object.

Especially in mediated reference, the introduction of third person individuals and
objects is therefore done mostly by means of iconic or name-based reference. This has
freed up the indexical of third person pronouns at least partially to serve in another
important function, namely repeating reference.

The special task of repeating reference arises in longer sentences and texts when a
certain referent has already been introduced and needs to be referred to again. In the
SLIM theory of language, repeating reference is analyzed as the return to a contextual
object that has been recently traversed.

9 In German, the second person pronoun is not a pure index. For a detailed discussion of the
personal pronouns of English in connection with their role as nominal fillers see Sect. 17.2.
The corresponding analysis for German is in Sect. 18.2.



6.3 Repeating Reference 111

From the viewpoint of a time-linear coding and decoding of meaning it would be
cumbersome if reference to an object already introduced always required the use of
a complex noun phrase or a name. Instead, third person pronouns are ideally suited
for a brief, precise, and versatile handling of repeating reference because of their
grammatical differentiation and the general nature of their pointing.

The following example illustrates a case of repeating reference in which a complex
symbolic noun phrase is followed by a third person pronoun. As indicated by the
arrows, reference by the noun phrase is taken up again by the pronoun.

6.3.1 COREFERENTIAL PRONOUN REPEATING REFERENCE

To connect this and the following examples pragmatically beyond their role as lin-
guistic examples in this chapter, let us assume that the little dog is called Fido and
that Fido lives in Peter’s house together with a big dog named Zach.

Reference to Fido is established initially by means of the symbolic meaning1 of
the complex noun phrase the little dog. Use of the pronoun he allows repeating ref-
erence to Fido with minimal effort. In traditional grammar, the pronominal reference
illustrated above is called anaphoric. The ‘full’ noun phrase preceding the pronoun
is called the antecedent and is coreferential with the pronoun. In traditional analysis,
anaphoric interpretations are limited to individual sentences.

In addition to the anaphoric (i.e., reference repeating) interpretation, the pronoun he
may also be interpreted noncoreferentially.

6.3.2 INDEXICAL PRONOUN WITHOUT COREFERENCE

The surface is the same as in 6.3.1. Yet the complex noun phrase and the pronoun
refer to different individuals, e.g., Fido vs. Zach.

According to a surface compositional analysis, the difference between 6.3.1
and 6.3.2 is neither syntactic nor semantic. Instead, it resides in the pragmatics, i.e.,
the relation between the meaning1 (here, specifically the pointer of he) and the con-
text. Which interpretation is intended by the speaker and which is chosen by the hearer
depends solely on the content of the respective subcontexts.

Under certain circumstances it may be desirable to establish initial reference with a
third person pronoun and then return to that referent using a (definite) complex noun
phrase or a name.10

10 This type of repeating reference is relatively rare. In spoken language, it must be supported
by a characteristic intonation. Stylistically it may create an expectation in the hearer who
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6.3.3 SYMBOLICALLY REPEATING REFERENCE I

In traditional grammar this pronominal reference is called cataphoric. The ‘full’ noun
phrase following the pronoun is called the postcedent and is coreferential with the
pronoun.

In addition to the cataphoric (i.e., reference repeating) interpretation, the noun
phrase the little dog may also be interpreted noncoreferentially.

6.3.4 SYMBOLIC REFERENCE WITHOUT COREFERENCE

The surface is the same as in 6.3.3, but the pronoun and the noun phrase refer to
different individuals. Without special contextual priming, the interpretation 6.3.4 is in
fact more probable than 6.3.3.

A coreferential interpretation presupposes that the two nominals involved are gram-
matically and conceptually compatible. For example, if he were replaced by they
in 6.3.1 or 6.3.3, an interpretation of repeating reference to Fido would not be possible
because of the incompatibility of number. Instead, an indexical interpretation of the
pronoun – as in 6.3.2 or 6.3.4 – would be the only possibility.

A pronoun-based return to a noun phrase referent or a noun-phrase-based return to a
pronoun referent may also be restricted by the sentence structure, as shown by the fol-
lowing examples. They express the intended coreference in terms of equal subscripts
(e.g., Peterk , hek) – a notational convention borrowed from theoretical linguistics.

6.3.5 SENTENCE STRUCTURE BLOCKING REPEATING REFERENCE

1. Anaphorical positioning:
After Peteri came home hei took a bath.
Peteri took a bath after hei came home.

%! Near Peteri hei saw a snake.11

2. Cataphorical positioning:
After hei came home Peteri took a bath.
%! Hei took a bath after Peteri came home.12

Near himi Peteri saw a snake.

is uncertain of the pronoun referent and who must wait for the following noun phrase to
support or specify the interpretation.

11 Lakoff (1968).
12 Langacker (1969). However, MacWhinney (1999) shows that this construction allows a

coreferential interpretation if the preceding main clause is marked as background informa-
tion by particles:
Shei had just returned home when Maryi saw that the mailbox was open.
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The examples marked with ‘%!’ are grammatically well-formed, but the co-indexed
nominals cannot be interpreted as coreferential – despite their closeness of position
and despite grammatical and conceptual compatibility.

In communication, repeating reference is also needed across sentence boundaries.

6.3.6 CROSS-SENTENTIAL COREFERENCE

Peterk wanted to drive into the countryside. Hek waited for Fidoi . When the little dogi

came home hek was glad.

This example shows that of several coreferential candidates it is not always the one
closest to the pronoun or the one in the same sentence which is the most plausible. For
example, the third sentence taken alone would suggest coreference between the little
dog and he. The content of the wider linguistic context, however, makes Peter a more
probable antecedent of the second he than the the little dog, even though the latter is
positioned closer to the pronoun.

Repeating reference with a complex noun phrase is also possible if the initial refer-
ence is based on a proper name:13

6.3.7 SYMBOLICALLY REPEATING REFERENCE II

Like 6.3.3 and 6.3.4, the surface of this example permits both a coreferential and a
noncoreferential interpretation.

Examples like this lead to the generalization that all three sign types may be used
for initial reference.

6.3.8 INITIAL REFERENCE ESTABLISHED BY SYMBOL, INDEX, AND NAME

the little dog
After he came home, he slept.

Fido

Furthermore, all three sign kinds may be used for repeating reference.

13 Instead of a proper name, repeated reference may be by a noun phrase, as in the following
example by Jackendoff (1972):

My neighbor went on vacation, but the idiot forgot his credit cards.

Jackendoff called the second noun phrase a pronominal epithet, based on the mistaken view
that the noun phrase the idiot is “pronominalized” via coreference with the antecedent my
neighbor.
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6.3.9 REPEATING REFERENCE USING SYMBOL, INDEX, AND NAME

the little dog
After he came home, he slept.

Fido

All instances in 6.3.8 and 6.3.9 permit a coreferential and a noncoreferential interpre-
tation. Which interpretation is intended by the speaker and chosen by the hearer is a
question of pragmatics.

Therefore the noun phrase the little dog maintains its symbolic character, the pro-
noun he maintains its indexical character, and Fido maintains its character as a name –
irrespective of whether these signs are used for repeating reference or not. Postulating
two different lexical entries for he, for example, one for each use, violates surface
compositionality.

Unfortunately, nativism has a long tradition14 of assigning special morphosyntactic
analyses to the anaphoric and cataphoric interpretations of third person pronouns,
based on stipulated coreference within the sentence boundary.15 This is not justified
because the personal pronouns form a uniform class not only morphologically and
syntactically, but also semantically: they are all of the sign kind index. This indexical
character is as inherent in third person pronouns as it is in first or second person
pronouns, regardless of whether or not such pronouns are used for repeating reference.

6.4 Exceptional Properties of Icon and Name

There are two important and interesting exceptions to de Saussure’s first law, namely
the sign kinds icon and name. Typical icons are signs with pictorial representations.
For example, in the Dutch city of Amsterdam one will find the following street sign:

6.4.1 EXAMPLE OF AN ICON (STREET SIGN)

Positioned at parking places between the street and the canal (Gracht) this sign says
something like “Attention: danger of driving car into water!”

14 Beginning with Lees’ (1960) transformational analysis of reflexive pronouns. A more re-
cent example may be found in Pollard and Sag (1994).

15 One likely reason for this mistake is that nativism overlooked the need for a theory of signs.
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Foreigners who speak no Dutch and see this sign for the first time can infer the
intended meaning2 directly from the surface of the sign and its positioning – via prag-
matic inferences which are obviously not language dependent. Thus the crucial prop-
erty of icons is that they can be understood spontaneously without the prior learning of
a specific language. For this reason, icons are widely used in multilingual applications
such as international airports, programming surfaces, manuals, etc.

Icons occur in all media of language such as vision, sound, and gesture. Sound-
based icons in natural language are called onomatopoeia. An example in English is
the word cuckoo: the sound form of the surface is in a meaningful (motivated, iconic)
relation to the sound of the bird in question.

That the meaning1 of icons may be understood independently of any particular lan-
guage comes with a cost, however. Depending on the modality, there is only a limited
number of concepts suitable16 for iconic representation. For this reason, new icons
must be designed and positioned very carefully to ensure proper understanding.

De Saussure viewed onomatopeia mostly as an exception to his first law.17 He
pointed out, first, that the number of onomatopoeic words is much smaller than ‘gen-
erally assumed.’ Second, they are only partially motivated because they differ from
language to language (e.g., glug-glug in English, glou-glou in French, and gluck-gluck
in German). Third, the onomatopoeic word forms are subject to morphological pro-
cesses, for which reason they may become demotivated over time.

Regarding the synchronic functioning of a fully developed natural language, one
may agree with de Saussure that onomatopeic words are indeed of secondary impor-
tance. The main interest of icons as a basic sign kind, however, arises with the question
of how natural language developed during evolution. In this context, de Saussure’s
position must be seen against the background of the age-old controversy between the
naturalists and the conventionalists:

[The naturalists] maintained that all words were indeed ‘naturally’ appropriate to
the things they signified. Although this might not always be evident to the layman,
they would say, it could be demonstrated by the philosopher able to discern the ‘re-
ality’ that lay behind the appearance of things. Thus was born the practice of con-
scious and deliberate etymology. The term itself (being formed from the Greek stem
etymo- signifying ‘true’ or ‘real’) betrays its philosophical origin. To lay bare the
origin of a word and thereby its ‘true’ meaning was to reveal one of the truths of
‘nature’.

Lyons (1968), pp. 4f.

16 For example, the sound form cuckoo is considerably more distinctive and thus more suitable
for use as an icon than a visual icon for this bird, recognition of which would require above-
average ornithological knowledge. Conversely, it would be very hard to find an acoustic
counterpart of the well-known nonsmoking sign consisting of the schematic representation
of a burning cigarette in a circle crossed by a diagonal bar – whereby the latter components
are symbolic in character.

17 Cf. de Saussure (1967), pp. 81f.
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The prototypical sign kind of naturalists is the icon, that of conventionalists the sym-
bol.

The naturalists recognized the spontaneous understanding of icons as an important
functional aspect of sign-based communication. This insight, however, is not applica-
ble to signs in which the relation between the surface and the concept type is based on
convention, as in symbols, or in which there is no concept type at all, as in indexicals
and names.

The conventionalists recognized that most signs have surfaces which – in the ter-
minology of de Saussure – are unmotivated. This insight, however, is no reason to
downplay iconic reference as a phenomenon.

According to the SLIM theory of language, the sign kinds icon and symbol function
in terms of the same iconic reference mechanism.

6.4.2 COMPARING THE STRUCTURE OF SYMBOL AND ICON

Symbol and icon share the same two-level structure with a fixed connection between
the surface and the concept type. The difference between the two sign kinds is in their
respective surfaces and the kind of connection between the two levels.

In symbols, the surface is unmotivated and the connection between the levels of the
surface and the concept type is based on the glue of convention. In icons, the surface is
motivated and the connection between the two levels is based ideally on their equality.

This analysis explains why icons, but not symbols, can be understood sponta-
neously, independently of any specific language. Icons use iconic reference directly,
because their meaning1 is apparent in the surface – for which reason icons can be un-
derstood without having to learn a convention. Symbols, on the other hand, use iconic
reference indirectly, because the connection between the concept type and the surface
is convention-based – for which reason symbols cannot be understood without the
prior learning of the convention.

By relating symbols and icons in a coherent theoretical manner within the [2+1]
level structure of the SLIM theory of language, the controversy between the conven-
tionalists and the naturalists is amicably resolved. Furthermore, the theory explains
why symbols can be used to refer spontaneously to objects never encountered before
(as in the Mars mushroom example in Sect. 4.2), namely because symbols and icons
function on the basis of the same iconic mechanism of reference.

Gradual changes in the surface (e.g., simplification) or the concept type (e.g., se-
mantic reinterpretation) turn icons quasi-automatically into symbols. These processes
of demotivation destroy the spontaneous understandability of the original icons, but
have the advantage of achieving a new level of generality. Once the concept has be-
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come independent of the surface it is not constrained by the surface’s modality any
more. The expressive power of symbols is much greater than that of icons because
symbols may build their meaning1 by combining elementary as well as complex con-
cept types from different modalities and may include logical concepts like negation.

Another exception to de Saussure’s first law besides icons is proper names. Because
names have no meaning1

18 (PoP-6 in 6.1.5), their initial choice is free.19 Once a name
has been given, however, it becomes a fixed property of its referent. The effective use
of a name requires that it be known to the speaker and the hearer.

A name like R2D2 is certainly ‘arbitrary’ in de Saussure’s sense. Names are an
exception to his first law, however, because they do not establish a convention-based
relation between a surface and a meaning. Rather, in names the matching frontier is
directly underneath the surface, in contradistinction to all the other sign kinds.

6.4.3 COMPARING THE STRUCTURE OF ICON AND NAME

18 It is possible and common to use symbols as names, e.g., Miller, Walker, Smith, Goldsmith,
or Diamond. In such a case, the symbolic meanings are only connotative. As a mechanism
of reference, name-based reference is independent of any symbolic connotations connected
to the marker used. In daily life, advertising, or art, however, the connotation of a name
may be of importance.

For example, Act I of Walküre (Valkyrie) by Richard WAGNER (1813–1883) devotes
more than forty minutes (depending on the conductor) to the question of which name the
stranger should take from the lady of the house who is also his long lost sister and very
soon to be lover. The stage direction at the end of Act I says Vorhang fällt schnell, which
Schopenhauer annotated in the margin of his dedicated score with Denn es ist hohe Zeit.

19 This allowed Giacomo CASANOVA (1725–1798) to give a detailed explanation of why he
chose Chevalier de Seingalt as his self-given title of nobility (Casanova de Seingalt 1963,
Vol. II, pp. 728f.). Sign-theoretically the free choice of names is in contrast to the absence
of such a choice in the other sign kinds of natural language. See in this connection Sect. 4.3
as well as Wittgenstein (1953) on private language.
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Icons are special signs in that their meaning doubles as the surface (↑). The theoret-
ical distinction between the surface and the meaning1 in icons allows their gradual
demotivation and their transformation into symbols.

Names are special signs in that their surface doubles as a marker (↓) at the level of
the contextual referent. The theoretical distinction between the surface and the marker
in names allows for reference to different persons having the same name, depending
on the context of use.20

6.5 Pictures, Pictograms, and Letters

In conclusion, let us consider the origin of icons from pictures and the gradual tran-
sition from pictures via visual icons (pictograms) to the ideographic,21 syllabic,22 and
alphabetic writing systems. Pictures are cognitively basic in that they arise in early
childhood and at the earliest beginnings of humankind.

Though pictures are not signs, they have the sign-theoretically interesting property
that they can refer. For example, Heather spontaneously recognizes the Statue of Lib-
erty on Spencer’s postcard (5.3.1). The picture refers to the statue because the viewer
establishes a relation to the statue via the picture. This relation is based on the simi-
larity between the picture (here, a photograph) and the object depicted. If the picture
showed something else, e.g., the Eiffel Tower, reference would be to a different object.

Taken by itself, a picture is purely representational. If its positioning is taken into
account, however, a picture may be used with a certain communicative intention. For
example, the photograph of an ashtray filled with disgusting cigarette butts placed
prominently on the wall of a waiting room in a hospital may be viewed as a mere pic-
ture. When the viewer begins to consider why this particular photograph was placed
in this particular place, however, the picture turns into an icon. Thereby linguistic and
nonlinguistic pragmatics (Sect. 5.1) have not yet separated.

The iconic use of a picture does not indicate explicitly whether a communicative
purpose is intended or not. Moreover, a successful iconic interpretation depends not
only on the disposition, but often also on the knowledge of the viewer. For example,
paintings from the European Middle Ages are usually loaded with iconic messages the
understanding of which requires a considerable degree of specialized knowledge.23

20 The crucial problem in the classic AI systems’ handling of natural language is the ‘gluing’
of surfaces to machine internal referents, based on a [−sense, +constructive] ontology. See
Sect. 20.4.

21 E.g., Chinese.
22 E.g., Japanese kana.
23 For example, when an Annunciation by the Flemish painter Rogier VAN DER WEYDEN

(1399?–1464) shows a glass of water through which there falls a beam of light, this may
seem accidental to the uninitiated. A more literate viewer will interpret it as an allegory of
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In addition to the iconic use of a genuine picture there are icons as a sign kind. An
icon results from a picture by simplifying it into a basic schema, whereby the loss of
detail (i) generalizes the content and (ii) explicitly marks a communicative purpose.
The schematic nature of an icon in conjunction with its relevant positioning invites
the viewer to infer the author’s intended message.

Using a picture as an icon is like using a rock as a hammer. Modifying the rock
to make it better suited for a specialized task is like schematizing a picture into an
icon. Just as handle and hitting side of a modified stone (e.g., a paleolithic wedge) are
different sides of the same object, the surface (handle) and the meaning of an icon are
different sides of the same concept.

In other words, a paleolithic wedge and a random rock differ in that the wedge –
but not the rock – provides for a clear distinction between the handling side and the
working side. The same is true for an icon in comparison to a picture: only the icon
– but not the picture – provides for a distinction between the levels of the surface and
the meaning.

This distinction is the basis for an independent development of surfaces and con-
cepts in signs, allowing a process of demotivation – and thus generalization – which
considerably improves expressive power.

6.5.1 TRANSITION FROM PICTURE TO ICON TO SYMBOL

According to this analysis, the iconic reference mechanism originated with pictures.
This process of generalization via icons to symbols occurs in all modalities of lan-
guage.

In the acoustic modality, the development begins with, for example, imitating the
call of a bird. The process continues with a simplified icon, e.g., cuckoo, and may end
with a demotivated symbol.

the Holy Ghost, however, because it is known that clerical scripture viewed the Immaculate
Conception as similar to light passing through a glass without causing material change.

This example shows once again that the positioning of signs in general, and icons in
particular, is of the greatest importance for the interpretation. Positioning the glass with
light passing through it in a painting of the Annunciation starts thought processes in the
educated viewer which go far beyond the purely representational aspect of this part of the
picture.
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In the gestural modality, the development begins with imitating a certain activity
such as harvesting or threshing grain. Such imitations are often schematized and ritu-
alized into traditional dances. In sign languages the process of demotivating gestures
results in true symbols.24

In the visual modality, the development begins with the picture of, for example,
a bull and continues with a simplified icon, e.g.,

A

. At this point two different kinds
of writing systems may evolve. Ideographic writing systems use the icon directly as a
pictogram. For example, the meaning ‘six bulls’ may be expressed in such a system
by drawing, painting, or chiseling a sequence of six bull icons:

AAAAAA

.
Letter- or syllable-based writing systems turn the pictogram into a letter by substi-

tuting the original meaning with the characteristic sound of the corresponding word in
the language. For example, in Hebrew, the word for bull or cattle has the sound form
’lf (= alf).25 The letter aleph or alpha resulted from replacing the meaning of the icon

A

with the sound form of the word with this meaning. This was accompanied by ty-
pographical considerations such as looks (letting the icon stand squarely on its ‘feet’
as A) and maximizing the distinction to other letters. This transition may be viewed as
a process of rotation:

6.5.2 ROTATION PRINCIPLE UNDERLYING TRANSITION FROM ICON TO LETTER

The word ’lf and the corresponding icon

A

are cognitively related because they have
the same meaning. This amounts to a meaning-based equivalence relation between the
word’s acoustic surface and the icon’s graphical surface (dotted line on the left). The
icon turns into a letter representing the sound if this dotted line between the surfaces
evolves into the main bond (solid line on the right). Thereby, the respective relations
to the meaning, which motivated the correlation between word and icon in the first
place, become obsolete and are forgotten.

The evolution of letters or ideographs as symbols for sounds26 permits representing
natural language in writing. The elementary symbols of the writing system, e.g., the

24 The notion of a ‘symbolic gesture’ in the SLIM theory of signs is related to, but pragmati-
cally different from, the common use of this term.

25 Givón (1985), pp. 193–195.
26 Highly developed ideographic writing systems such as Egyptian hieroglyphs or Chinese

pictograms annotate icons with the sound form of corresponding words to overcome the
inherent limitations of iconic representation.
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letters, are combined into letter sequences which denote word surfaces. The surfaces
in turn denote the meanings1. Aristotle put it this way:

Spoken words are the signs of mental experience and written words are the signs of
spoken words.

Aristotle, DE INTERPRETATIONE, 1

For example, the sequence of letter symbols s, q, u, a, r, and e denotes the surface of
the symbol square. This surface, which may also be represented acoustically, denotes
the concept defined in 3.3.3. The gradual demotivation in the evolution of language
symbols – affecting spoken word surfaces as well as letters or signs – is a process of
the motivational chain becoming longer and longer until the original motivation has
become irrelevant and is forgotten.

Exercises

Section 6.1
1. Is there a theory of signs included in nativism, model theory, or speech act the-

ory?
2. Explain the functioning of iconic, indexical, and name-based reference.
3. Which indexical words refer to the four parameters of the STAR? What is their

syntactic category? How pure are they?
4. Explain the use of here in the postcard example 5.3.1. Is it an example of imme-

diate or a mediated reference? Do you require different answers for the speaker
and the hearer?

5. How would you implement the meaning1 of yesterday, tomorrow, in three min-
utes, to my right, to your right, above me, and behind you in CURIOUS?

6. Explain the indexical, symbolic, and grammatical components in the word forms
me, my, mine, our, us, ours.

7. Why does a coherent treatment of language and nonlanguage reference require
a cognitive approach describing the internal states of the agents involved? Give
detailed reasons, with examples of symbols, indexicals, and names.

8. Describe the language of the bees and explain how it handles displaced reference
(CoL, pp. 281f.).

9. Why are PoP-1 – PoP-3 presupposed by PoP-4 – PoP-6?

In the modality of gestures, the Marx Brothers use the same principle for comical pur-
poses. In the movie Love Happy (1949), Harpo gestures the name of Madame Egelichi by
pantomiming eagle and itchy.
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10. Summarize the linguistic universals that have been proclaimed within nativism
by making a list of those in Chomsky (1957, 1965, 1981), as well as in LFG
(Bresnan (ed.) 1982), GPSG (Gazdar et al. 1985), and HPSG (Pollard and Sag
1987, 1994). Compare their empirical content and their functionality. How do
they characterize the innate human language faculty?

Section 6.2
1. Which four ingredients make up the internal structure of symbols and indexicals?
2. Describe de Saussure’s first law and illustrate it with examples from different

languages. Why does it apply to symbols as well as indexicals?
3. Name three possible functions of symbols, and explain the difference between

the speak and hear modes with examples.
4. Why can the meaning1 of symbols be minimal? Are the different shades of the

color red part of the meaning of the word red?
5. What is the difference between the index of a textual database (2.1.1) and the

sign kind of an indexical? What is their common conceptual root?

Section 6.3
1. Compare the pointing areas of first, second, and third person.
2. What is repeating reference and how can it be achieved in natural language?
3. Explain the anaphoric and the cataphoric use of a third person pronoun.
4. Which syntactic structures can block anaphoric or cataphoric interpretations?
5. Can a third person pronoun refer without an antecedent or a postcedent?
6. What did Jackendoff mean by his notion pronominal epithet?

Section 6.4
1. What is the characteristic property of an icon, and how can it be practically used?
2. Why are icons an exception to de Saussure’s first law?
3. Why are onomatopeic words a kind of icon?
4. How does de Saussure view the role of onomatopeia in the natural languages?
5. Explain the viewpoints of the naturalists and the conventionalists.
6. What are the specific strengths and weaknesses of the icon as a sign kind?
7. Why can demotivation increase the expressive potential of a sign?
8. Would you classify de Saussure’s approach as naturalist or conventionalist?

Section 6.5
1. Compare the structure and functioning of icon and name.
2. Why are names an exception to de Saussure’s first law?
3. Why is a name like Peter less general than a symbol like table or an indexical

like here? What is the great advantage of name-based reference?
4. How does Peirce define the difference between symbols, indexicals, and icons?

Can this definition be used in computational linguistics? (CoL, pp. 276–280.)
5. Why is a picture not a sign? How can a picture be used as a sign?
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6. Explain the gradual development of symbols from pictures.
7. What is the difference between ideographic- and letter-based writing systems?
8. Why are letters symbols? What is their meaning1?
9. What is the difference between letter symbols and word symbols?

10. Explain the rotation principle in the evolution of letters from icons.



Part II

Theory of Grammar



7. Formal Grammar

Part I has explained the mechanism of natural communication, based on the [2+1]
level structure of the SLIM theory of language and different kinds of language signs.
Part II turns to the combinatorial building up of complex signs within the grammar
component of syntax. The methods are those of formal language theory, a wide field
reaching far into the foundations of mathematics and logic. The purpose here is to
introduce the linguistically relevant concepts and formalisms as simply as possible,
explaining their historical origin and motivation as well as their different strengths
and weaknesses. Formal proofs will be kept to a minimum.

Section 7.1 explains the formal notion of a language as a subset of the free monoid
over a finite lexicon. Section 7.2 describes the mathematical, empirical, and computa-
tional reasons for using formal grammars in the linguistic description of natural lan-
guage. Section 7.3 shows that using formal grammar is a methodologically necessary
condition for natural language analysis, but it is not sufficient to ensure that the gram-
mar formalism of choice will be structurally suitable for an empirically successful
analysis in the long run. Section 7.4 introduces the historically first formal grammar
for natural language, namely categorial grammar or C Grammar. Section 7.5 presents
a formal application of C Grammar to a small ‘fragment’ of English.

7.1 Language as a Subset of the Free Monoid

Formal language theory works with mathematical methods which treat the empirical
contents of grammatical analysis and the functioning of communication as neutrally
as possible. This is apparent in its abstract notion of language:

7.1.1 DEFINITION OF LANGUAGE

A language is a set of finite word sequences (sentences).

This set (in the sense of set theory) is unordered. Each element of the set, however,
consists of an ordered sequence of words.

The most basic task in defining a formal language is to characterize the grammati-
cally well-formed sequences. Thereby the words are usually treated as simple surfaces
with no category, no morphological variation, no special base form, and no meaning1.
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For example, the words a and b constitute the word set LX = {a,b}, i.e., the lexicon
(or alphabet1) of a formal language to be defined below. The elements of LX may be
combined into infinitely many different word sequences (provided there is no limit on
their length). Such an infinite set of all possible sequences is called the free monoid
produced from a finite lexicon.

7.1.2 ILLUSTRATION OF THE FREE MONOID OVER LX = {a,b}
ε

a, b
aa, ab, ba, bb
aaa, aab, aba, abb, baa, bab, bba, bbb
aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb . . .
. . .

The free monoid over LX is also called the Kleene closure (Kleene 1952) and denoted
by LX∗. The free monoid without the neutral element ε (also called empty sequence
or zero sequence) is called the positive closure and is denoted by LX+.2

The concept of a free monoid is applicable to artificial and natural languages alike.
The lexica of natural languages are comparatively large: if all the different word forms
are taken into account, they may contain several million entries. In principle, however,
the lexica of natural languages are like those of artificial languages in that they are
finite, whereas the associated free monoids are infinite.

Because a free monoid contains all possible word sequences, many of them will not
be grammatical relative to a given language. In order to filter out the grammatically
correct word sequences, a formal criterion is required to distinguish the grammatically
well-formed sequences from the ill-formed ones.

In an artificial language, the specification of grammatical well-formedness is not
difficult. It is defined by those who invented the language. For example, one has de-
fined the artificial language akbk (with k ≥ 1) as the set of expressions which consist
of an arbitrary number of the word a followed by an equal number of the word b. This
language is a proper subset of the set of sequences over {a,b} sketched in 7.1.2.

According to the informal description of akbk, the following expressions

a b, a a b b, a a a b b b, a a a a b b b b, etc.,

are well-formed. All the expressions of the free monoid not complying with this struc-
ture, such as

a, b, b a, b b a a, a b a b, etc.,

1 In formal language theory, the lexicon of an artificial language is sometimes called the al-
phabet, a word a letter, and a sentence a word. From a linguistic point of view this practice
is unnecessarily misleading. Therefore a basic expression of an artificial or a natural lan-
guage is called here uniformly a word (even if the word consists of only a single letter,
e.g., a) and a complete well-formed expression is called here uniformly a sentence (even if
it consists only of a sequence of one-letter-words, e.g., aaabbb).

2 In other words: the free monoid over LX equals LX+ ∪ {ε} (Harrison 1978, p. 3).
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are not well-formed expressions of the language akbk. Analogously to akbk we may
invent other artificial languages such as akbkck, akbmckdm, etc.

It is not only the free monoid over a finite lexicon which contains infinitely many
expressions, but the possible languages – as subsets of the free monoid – also usu-
ally comprise infinitely3 many well-formed expressions or sentences. Therefore the
criterion for filtering a language from a free monoid must be more than just a list.4

What is needed instead is a principled structural description of the well-formed
expressions which may be applied to infinitely many (i.e., ever new) expressions. In
formal language theory, these structural descriptions are specified as recursive rule
systems which were borrowed from logic.

The following example of a formal grammar for the artificial language akbk uses a
formalism known today as PS Grammar.5

7.1.3 PS GRAMMAR FOR akbk

S → a S b
S → a b

This kind of grammar is called a generative grammar because it generates all well-
formed expressions of the language from a single start symbol, here the S node. A gen-
erative grammar is based on the principle of possible substitution, i.e., the sign on the
left of a rule arrow is substituted by the signs on the right.

Consider for example the derivation of the string a a a b b b. First the rule S → a S b
is applied, replacing the S on the left of the arrow by the signs on the right. This
produces the string

a S b.

Next, the first rule is applied again, replacing the S in the expression just derived by
a S b. This produces the new string

a a S b b.

Finally, the S in this new string is replaced by a b using the second rule, resulting in

a a a b b b.

In this way the string in question may be derived formally using the rules of the
grammar, thus proving that it is a well-formed expression of the language akbk.

3 The subsets of infinite sets may themselves be infinite. For example, the even numbers, e.g.,
2,4,6, . . . form an infinite subset of the natural numbers 1,2,3,4,5, . . . . The latter are formed
from the finite lexicon of the digits 1,2,3,4,5,6,7,8,9, and 0 by means of concatenation, e.g.,
12 or 21.

4 This is because an explicit list of the well-formed sentences is finite by nature. Therefore
it would be impossible to make a list of, for example, all the natural numbers. Instead the
infinitely many surfaces of possible natural numbers are produced from the digits via the
structural principle of concatenation.

5 A detailed introduction to PS Grammar is given in Chap. 8.
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Even though the grammar uses the finite lexicon {a,b} and a finite number of rules,
it generates infinitely many expressions of the language akbk. The formal basis for
this is the recursion of the first rule: the variable S appears both on the left and on the
right of the rule arrow, thus allowing a reapplication of the rule to its own output. The
second rule, on the other hand, is an example of a nonrecursive rule in PS Grammar
because its right-hand side does not contain a variable.

While all generative grammars are formal rule systems, not all formal grammars
are generative grammars. A generative grammar proves the well-formedness of an
expression indirectly by showing that it can be generated from an initial S node, com-
puting possible substitutions. It is also possible, however, to establish well-formedness
directly by going from left-to-right through an input expression, computing possible
continuations.6

Today we are confronted with hundreds of different grammar formalisms. Most
of these are formalisms which are derived from the first two of the following three
elementary grammar formalisms:

7.1.4 ELEMENTARY GRAMMAR FORMALISMS

1. Categorial or C Grammar
2. Phrase-structure or PS Grammar
3. Left-associative or LA Grammar

These elementary formalisms differ in the form of their respective categories and rules
(10.1.3, 10.1.4, and 10.1.5) as well as in their conceptual derivation orders (10.1.6).
The formal basis of an elementary formalism is its algebraic definition.

7.1.5 ALGEBRAIC DEFINITION

The algebraic definition of a formal grammar7 explicitly enumerates the basic
components of the system, defining them and the structural relations between
them using notions of set theory only.

An elementary formalism requires, furthermore, that its most relevant mathematical
properties have been determined. These are in particular the hierarchy of language
classes accepted by subtypes of the formalism and their complexity. Also, the formal
relations between different elementary formalisms must be established.8

The reason for the many derived formalisms existing today is the attempt to over-
come inherent weaknesses of the underlying elementary formalism. Some examples

6 This latter approach is taken by Left-Associative grammar (LA Grammar, Chap. 10).
7 An algebraic definition of C Grammar is provided in 7.4.2, of PS Grammar in 8.1.1, and of

LA Grammar in 10.2.1, respectively.
8 The relation between C and PS Grammar is described in Sect. 9.2. The different language

hierarchies of PS and LA Grammar are compared in Chap. 12.
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of derived formalisms which have enjoyed wider popularity at one time or another
may be enumerated as follows:

7.1.6 DERIVED FORMALISMS OF PS GRAMMAR

Syntactic Structures, Generative Semantics, Standard Theory (ST), Extended
Standard Theory (EST), Revised Extended Standard Theory (REST), Gov-
ernment and Binding (GB), Barriers, Generalized Phrase Structure Grammar
(GPSG), Lexical Functional Grammar (LFG), Head-driven Phrase Structure
Grammar (HPSG)

7.1.7 DERIVED FORMALISMS OF C GRAMMAR

Montague grammar (MG), Functional Unification Grammar (FUG), Catego-
rial Unification Grammar (CUG), Combinatory Categorial Grammar (CCG),
Unification-based Categorial Grammar (UCG)

It was even proposed that PS and C Grammar be combined into a derived formalism
to compensate for their weaknesses and to benefit from their respective strengths.

The mathematical properties of derived formalisms must be characterized just as
explicitly and precisely as those of the underlying elementary formalism. At first,
derived formalisms seem to have the advantage that the known properties of their re-
spective elementary formalisms would facilitate their analysis. In the long run, how-
ever, the mathematical analysis of derived formalisms has turned out to be at least
as difficult as that of elementary formalisms. Often taking decades, this analysis has
frequently been subject to error.9

In addition to elementary and derived formalisms there also exist semi-formal sys-
tems of grammar, the description of which has not been underpinned by an algebraic
definition. Examples are dependency grammar (Tesnière 1959), systemic grammar
(Halliday 1985), and stratificational grammar (Lamb 1996). In such systems one tries
to get by, to a certain degree, with conjectures based on similarities with properties
of known formalisms. For example, there is a structural resemblance between depen-
dency grammar and C Grammar.

For systematic reasons, the analysis of mathematical properties and empirical suit-
ability will concentrate here mainly on the elementary formalisms. The question is
which of them is suited best (i) for the linguistic analysis of natural language and

9 For example, Chomsky originally thought that the recoverability condition of deletions
would keep transformational grammar decidable (see Sect. 8.5). However, Peters and
Ritchie proved in 1972 that TG is undecidable despite this condition.

When Gazdar (1981) proposed the additional formalism of metarules for context-free PS
Grammar, he formulated the finite closure condition to ensure that metarules would not in-
crease complexity beyond that of context-free. However, the condition was widely rejected
as linguistically unmotivated, leading Uszkoreit and Peters (1986) to the conclusion that
GPSG is in fact undecidable.
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(ii) for being implemented as automatic parsers. Also, the formal and conceptual rea-
sons for why some elementary formalisms have been producing ever new derived
formalisms will be explained.

7.2 Methodological Reasons for Formal Grammar

In contrast to artificial languages like akbk and akbkck, which were invented for cer-
tain purposes (particularly complexity-theoretic considerations), natural languages
are given by their respective language communities. This means that the decision
of whether or not a natural language expression is grammatically well-formed de-
pends on the language intuition of the native speakers. For example, the grammatical
correctness of expression of English is noncontroversial:

7.2.1 GRAMMATICALLY WELL-FORMED EXPRESSION

the little dogs slept soundly

The following expression, on the other hand, will be rejected as ungrammatical by
any competent speaker of English.

7.2.2 GRAMMATICALLY ILL-FORMED EXPRESSION

*10Soundly slept dogs little the

The second example resulted from inverting the order of the first.
Based on the distinction between well-formed and ill-formed expressions, formal

grammars may also be written for natural languages. Just as the laws of physics allow
one to precompute the location of a celestial body at a certain time, the rules of a
descriptively adequate formal grammar should make it possible to formally decide,
for any arbitrary expression, whether or not it is grammatically well-formed.

At first glance this goal of theoretical linguistics may look rather academic. In fact,
however, the use of strictly formalized grammars is indispensable for modern linguis-
tic methodology:

7.2.3 METHODOLOGICAL CONSEQUENCES OF FORMAL GRAMMAR

– Empirical: formation of explicit hypotheses
A formal rule system provides explicit hypotheses about which input expressions
are considered well-formed and which are not. The comparison of the hypotheses
of the formal system with the intuitions of the native speaker provides clarity about
where the formal grammar is empirically inadequate – which is essential for an
incremental improvement of the grammar.

10 In linguistics, examples of ungrammatical structures are marked with an asterisk *, a con-
vention which dates back at least to Bloomfield (1933).



7.3 Adequacy of Formal Grammars 133

– Mathematical: determining the formal properties
Only strictly formalized descriptions allow us to analyze their mathematical prop-
erties11 such as decidability, complexity, and generative capacity. The mathematical
properties of a grammar formalism in turn determine whether it is suitable for em-
pirical description and computational realization.

– Computational: declarative specification of the parser
Only a formal rule system may be used as a declarative specification12 of the parser,
characterizing its necessary properties in contrast to accidental properties stemming
from the choice of the programming environment, etc. A parser in turn provides the
automatic language analysis needed for the verification of the individual grammars
written within the formalism of choice.

Compared to traditional grammar (1.2.1), a formal grammar provides an explicit de-
scription of a language’s regular structures, and not only the exceptions and irregu-
larities. However, for the initial analysis of a given natural language many different
formal grammars may be defined; they may all be equally well formalized and each
may offer a confusing mix of different merits and weaknesses. This raises the question
of which of these formalisms will turn out best empirically in the long-term upscaling
of a natural language’s description.

In summary, the definition of a formal grammar is a necessary, but not a sufficient,
condition for an adequate linguistic analysis of a natural language. If a grammar for-
malism may be shown to be suboptimal by means of mathematical analysis, this is
not the fault of the formal method. Conversely, if no such conclusions can be drawn
because of insufficient formalization, this is not a merit of the grammar formalism.

7.3 Adequacy of Formal Grammars

A formal grammar is called descriptively adequate for a given natural language if
it accepts all and only the well-formed expressions of the language. An inadequate
grammar is either incorrect, incomplete, or both. A grammar is incorrect if it accepts
expressions which are not well-formed (overgeneration). A grammar is incomplete if
there are well-formed expressions it does not accept (undergeneration).

Let us assume, for example, that there is a formal grammar for a natural language we
do not speak, e.g., Quechua,13 and we would like to check whether a certain expression

11 The mathematical properties of informal descriptions, on the other hand, cannot be investi-
gated because their structures are not sufficiently clearly specified.

12 Programs which are not based on a declarative specification may still run. However, as
long as it is not clear which of their properties are theoretically necessary and which are
an accidental result of the programming environment and the programmer’s idiosyncrasies,
such programs – called hacks – are of little theoretical interest. From a practical point
of view, they are difficult to scale up and hard to debug. The relation between grammar
systems and their implementation is further discussed in Sect. 15.1.

13 Quechua is a language of South-American Indians.



134 7. Formal Grammar

is well-formed. For this, we assign to the word forms their respective categories using
the lexicon of our formal Quechua grammar. Then we attempt to derive the resulting
sequence of analyzed word forms using the formal grammar rules. According to the
formal grammar, the expression is well-formed if such a derivation exists.

However, in natural language such a formal derivation is a reliable criterion of well-
formedness only if the formal grammar is known to be descriptively adequate. As
long as there is any doubt about the grammar in question, all accepted and rejected
expressions must be presented to native speakers for deciding whether the grammar
has correctly distinguished between well-formed or ill-formed input (correctness).
Also, any new Quechua expressions must be checked as to whether or not the grammar
will accept them (completeness).

Determining whether a given expression is in fact accepted by the formal grammar
may take long – in fact, infinitely long – even if the check is done automatically
on a supercomputer. This is the case whenever the grammar formalism used is of
high mathematical complexity. The mathematical complexity of a formal grammar
is measured as the maximal number of rule applications (worst case) relative to the
length of the input (Sect. 8.2).

Within nativism, systems of generative grammar for natural language are of high
mathematical complexity while attempting to characterize grammatical well-formed-
ness without a functional theory of communication. To avoid these shortcomings, the
syntactic analysis of natural language should be

– defined mathematically as a formal theory of low complexity,
– designed functionally as a component of natural language communication, and
– realized methodologically as an efficiently implemented computer program in

which the properties of formal language theory and of natural language analysis
are represented in a modular and transparent manner.

These desiderata must pursued simultaneously. After all, what use is a pleasantly de-
signed syntax, if its complexity turns out to be undecidable or exponential? What is
the purpose of a mathematically well-founded and efficient formalism, if it turns out
to be structurally incompatible with the mechanism of natural communication? How
reliable is a mathematically and functionally well-suited grammar, if it has not been
computationally verified on realistic, i.e., very large, amounts of data?

7.4 Formalism of C Grammar

The historically first elementary grammar formalism was categorial grammar or
C grammar. It was invented by the Polish logicians Leśniewski (1929) and Aj-
dukiewicz (1935) in order to avoid the Russell paradox in formal language analysis.
C Grammar was first applied to natural language by Bar-Hillel (1953).14

14 A good intuitive summary may be found in Geach (1972). See also Lambek (1958) and
Bar-Hillel (1964), Chap. 14, pp. 185–189.
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The origin of C Grammar in the context of the Russell paradox resulted from the
outset in a logical semantic orientation (Sect. 19.3). The combinatorics of C Grammar
is based on the functor-argument structure of a mathematical function. A functor de-
notes a function which maps suitable arguments to values. A mathematical function
consists of a 1. name, a specification of the 2. domain (i.e., the set of arguments),
a specification of the 3. range (i.e., the set of values), and a specification of the 4.
assignment which associates each argument with at most one value.

7.4.1 STRUCTURE OF A MATHEMATICAL FUNCTION

A simple example of a function is the squaring of natural numbers. The name of this
function is square_number, the domain is the set of natural numbers, the range is
likewise the set of natural numbers, and the assignment provides for each possible
argument, e.g., 1, 2, 3, 4, 5, . . . , exactly one value, i.e., 1, 4, 9, 16, 25, . . . .15

The role of functors and arguments in C Grammar is formally reflected in the defini-
tion of its categories and rules. This is shown by the following algebraic definition:16

7.4.2 ALGEBRAIC DEFINITION OF C GRAMMAR

A C Grammar is a quintuple <W, C, LX, R, CE>.

1. W is a finite set of word form surfaces.
2. C is a set of categories such that

(a) basis
u and v ∈ C,17

(b) induction
if X and Y ∈ C, then also (X/Y) and (X\Y) ∈ C,

(c) closure
Nothing is in C except as specified in (a) and (b).

3. LX is a finite set such that LX ⊂ (W × C).
4. R is a set comprising the following two rule schemata:

α(Y/X) ◦ β(Y) ⇒ αβ(X)

β(Y) ◦ α(Y\X) ⇒ βα(X)

5. CE is a set comprising the categories of complete expressions, with CE ⊆ C.

15 In contrast, square_root is not a function, but called a relation because it may assign more
than one value to an argument in the domain. The root of 4, for example, has two values,
namely 2 and −2.

16 An alternative algebraic definition of C Grammar may be found in Bar-Hillel (1964), p. 188.
17 The names and the number of elementary categories (here, u and v) are in principle unre-

stricted. For example, Ajdukiewicz used only one elementary category, Geach and Mon-
tague used two, others three.
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In accordance with the general notion of an algebraic definition (7.1.5), the basic
components of C Grammar are first enumerated in the quintuple <W, C, LX, R, CE>.
Then these components are set-theoretically characterized in clauses 1–5.

More specifically, the set W is defined as a finite, unordered enumeration of the
basic surfaces of the language to be described. For example, in the case of the artificial
language akbk the set W would contain a and b.

The set C is defined recursively. Because the start elements u and v are in C, so are
(u/v), (v/u), (u\v), and (v\u), according to the induction clause.This means in turn
that also ((u/v)/v), ((u/v)\v), ((u/v)/u), ((u/v)\u), (u/(u/v)), (v/(u/v)), etc., belong
to C. C is infinite because new elements can be formed recursively from old ones.

The set LX is a finite set of ordered pairs such that each ordered pair is built from
(i) an element of W and (ii) an element of C. Notationally, the second member of the
ordered pair, i.e., the category, is written as a subscript to the first as in, for example,
a((u/v)\v). Which surfaces (i.e., elements of W) take which elements of C as their
categories is specified in LX by explicitly listing the ordered pairs.

The set R contains two rule schemata. They use the variables α and β to represent
the surfaces of the functor and the argument, respectively, and the variables X and Y
to represent their category patterns. The first schema combines functor and argument
in the order αβ , whereby the Y in the category of the functor α is canceled by the
corresponding symbol in the category of argument β . The second schema combines
functor and argument in the inverse order, i.e., βα. The alternative ordering is formally
triggered by the backslash ‘\’ (instead of the slash ‘/’) in the category of α. This kind
of C Grammar has been called bidirectional C Grammar by Bar-Hillel because the
two rule schemata permit placing a functor either before or after the argument.

The set CE, finally, describes the categories of those expressions which are consid-
ered complete. Depending on the specific C Grammar and the specific language, this
set may be finite and specified in terms of an explicit listing, or it may be infinite and
characterized by patterns containing variables.

Whether two categorized language expressions may be legally combined depends
on whether their categories can be pattern-matched with a suitable rule schema. This
process of matching is traditionally handled implicitly in C Grammar because there
are only the following two rule schemata, one for combining a functor-argument pair,
the other for combining an argument-functor pair:

7.4.3 IMPLICIT PATTERN MATCHING IN COMBINATIONS OF C GRAMMAR
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Like PS Grammar, C Grammar is based on possible substitutions: the expression to
the left of the arrow is replaced by the expression to the right. However, while the
derivation order of PS Grammar is top-down, that of C Grammar is bottom-up.

In contrast to PS Grammar, which codes the combinatorics into a multitude of rules,
C Grammar codes the combinatorics into the category structures: a language is com-
pletely specified by defining (i) the lexicon LX and (ii) the set of complete expressions
CE. This is illustrated by the following definition of the artificial language akbk, fa-
miliar from its PS Grammar analysis 7.1.3:

7.4.4 C GRAMMAR FOR akbk

LX =def {a(u/v),b(u), a(v/(u/v))}
CE =def {(v)}

The word a has two lexical definitions with the categories (u/v) and (v/(u/v)), re-
spectively, for reasons apparent in the following derivation tree:

7.4.5 EXAMPLE OF akbk DERIVATION, FOR k = 3

The derivation begins with the combination of words 3 and 4. Only this initial com-
position uses the categorial reading (u/v) of word a. The result is the expression ab of
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category (v). This would be a complete expression according to the definition of CE
in 7.4.4, provided there were no other words in the input string. Next, word 2 is com-
bined with the result of the last combination, producing the expression aab with the
category (u/v). This result is in turn combined with word 5, producing the expression
aabb with the category (v), etc.

In this way complete expressions of category (v) may be derived, each consisting
of arbitrarily many words a followed by an equal number of words b. Thus, a finite
definition generates infinitely many expressions of the artificial language akbk.

7.5 C Grammar for Natural Language

C Grammar is the prototype of a lexicalist approach: all the combinatorial properties
of the language are coded into the categories of its basic expressions. This is as ap-
parent in the C grammatical definition of the artificial language akbk as it is in the
following definition of a tiny fragment18 of English:

7.5.1 C GRAMMAR FOR A TINY FRAGMENT OF ENGLISH

LX = def {W(e) ∪ W(e\t)}, where

W(e) = {Julia,Peter,Mary,Fritz,Susanne, . . .}
W(e\t) = {sleeps, laughs, sings, . . .}

CE = def {(t)}
Compared to 7.4.4, this grammar exhibits two notational modifications.

First, the lexical entries are assembled into word classes Wcat . This notation, which
originated with Montague, makes the writing of lexica simpler because the categories
are specified for whole classes rather than for each single word form.

Second, the elementary categories, called u and v, are renamed as e and t, respec-
tively. According to Montague, e stands for entity and t for truth value. Thus, the
category (e\t) of sleeps, laughs, sings, . . . is motivated not only syntactically, but also
semantically: (e\t) is interpreted as a characteristic function from entities into truth
values. The characteristic function of, for example, sleeps determines the set of sleep-
ers by checking each entity e for whether the associated truth value t is 1 (true) or 0
(false). Thus, the set denoted by sleeps consists of those entities which the equivalent
characteristic function maps into 1.

Because different words like sleep and walk have the same category, they have
the same domain and the same range. The difference in their meaning resides

18 The term fragment is used to refer to that subset of a natural language which a given formal
grammar is designed to handle.
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solely in their different assignments (4 in 7.4.1). How to define these different as-
signments in a nontrivial way (i.e., not in terms of explicitly listing ordered pairs
in the model definition) is one of the basic problems of model-theoretic seman-
tics.19

The semantic interpretation of the C grammatically analyzed sentence Julia sleeps
relative to some model M is defined as follows: The sentence is true if the denotation
of sleeps maps the denotation of Julia into 1, and false otherwise.

7.5.2 SIMULTANEOUS SYNTACTIC AND SEMANTIC ANALYSIS

According to the equivalent set-theoretic view, the sentence is true if the denotation
of Julia in M is an element of the set denoted by sleeps in M.

Based on the method of categorization outlined above, a sentence like The little black
dogs sleep may be analyzed as in the following derivation tree.

7.5.3 C ANALYSIS OF A NATURAL LANGUAGE SENTENCE

As in the previous examples 7.4.4 and 7.5.1, the C Grammar analyzing or generating
this example consists only of the lexicon LX and the set CE.

19 Sect. 19.4 and CoL, pp. 292–295.
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7.5.4 C GRAMMAR FOR EXAMPLE 7.5.3

LX = def {W(e) ∪ W(e\t) ∪ W(e/t) ∪ W((e/t)/(e/t)) ∪ W((e/t)/t)}, where

W(e) = {Julia,Peter,Mary,Fritz,Susanne, . . .}
W(e\t) = {sleeps, laughs, sings, . . .}
W(e/t) = {dog,dogs, cat, cats, table, tables, . . .}
W((e/t)/(e/t)) = {little,black, . . .}
W((e/t)/t) = {a, the,every, . . .}

CE = def {(t)}
In this C Grammar, the categories are motivated by both (i) the denotation (semantics)
and (ii) the combinatorics (syntax) of an expression. For example, because nouns
denote sets they are categorized20 as (e/t), i.e., as characteristic functions from entities
to truth values, whereby the slant of the slash serves to distinguish nouns syntactically
from intransitive verbs.

Furthermore, because determiners combine with nouns and the resulting noun
phrases may be regarded as denoting entities – like proper names – one may cate-
gorize the determiner as ((e/t)/e), i.e., as a functor which takes a noun (e/t) to make
something like a name (e). Adjectives, on the other hand, take a noun to make a noun,
which may be expressed by categorizing adjectives as ((e/t)/(e/t)). From this struc-
ture follows the possibility of stacking modifiers recursively. It follows that a noun
may take an unlimited number of adjectives.

In theory, such a high degree of motivation and the constraints following from it are
generally regarded as highly desirable in science. The idea is: the better constrained
the theory, the better the guidance for empirical work. This presupposes, however, that
the theory in question doesn’t suffer from any fatal flaws.

For example, in C Grammar it is not obvious where the correct initial composition
should take place in the input surface. Thus, the analysis of a given input has the
character of problem solving and the correct intermediate expressions can only be
discovered by trial and error. As a consequence, even experts must often struggle to
find a derivation like 7.4.5 for a given string relative to a given C Grammar (or to show
that such a derivation does not exist) – especially in languages not as simple as akbk.
This is unsuitable for an efficient computational implementation.

Second, C Grammars require a high degree of lexical ambiguity in order to code
alternative word orders into alternative categories. This is illustrated by the C Gram-
mar 7.5.4, which is not yet adequate for its tiny fragment, but which suffers from
overgeneration. For example, the combination of dog(e/t) ◦ Peter(e) into the ‘sentence’
∗dogPeter(t) is not blocked. Furthermore, there is no proper treatment of the agreement

20 For simplicity and consistency, our notation differs from Montague’s in that the distinc-
tion between syntactic categories and semantic types is omitted, with arguments positioned
before the slash.
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between determiners and nouns, allowing the generation of ungrammatical combina-
tions like *every dogs and *all dog.

In theory, each such difficulty could be handled by a seemingly minor extension
of the formalism. In practice, however, the extensions necessary for even moder-
ately sized descriptive work21 quickly turn the conceptually transparent and mathe-
matically benign elementary formalism of C Grammar into derived systems of high
complexity. The need for ever more ad hoc solutions and the concomitant loss of
transparency make C Grammar an unlikely candidate for reaching the goal of theo-
retical linguistics, namely a complete formal description of at least one natural lan-
guage.

Exercises

Section 7.1

1. How is the notion of a language defined in formal grammar?
2. Explain the notion of a free monoid as it relates to formal grammar.
3. What is the difference between positive closure and Kleene closure?
4. In what sense can a generative grammar be viewed as a filter?
5. Explain the role of recursion in the derivation of aaaabbbb using definition 7.1.3.
6. Why is PS Grammar called a generative grammar?
7. What is an algebraic definition and what is its purpose?
8. What is the difference between elementary, derived, and semi-formal for-

malisms?
9. What is the reason for the development of derived formalisms?

Section 7.2

1. Explain the difference in the well-formedness for artificial and natural languages.
2. Why is a formal characterization of grammatical well-formedness a descriptive

goal of theoretical linguistics?
3. Name three reasons for using formal grammar in modern linguistics.
4. Why is the use of formal grammars a necessary, but not a sufficient, condition

for a successful language analysis?

21 For an attempt see SCG.
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Section 7.3
1. Under what circumstances is a formal grammar descriptively adequate?
2. What is meant by the mathematical complexity of a grammar formalism and why

is it relevant for practical work?
3. What is the difference between functional and nonfunctional grammar theories?
4. Which three aspects should be jointly taken into account in the development of a

generative grammar and why?

Section 7.4
1. Who invented C Grammar, when, and for what purpose?
2. When was C Grammar first applied to natural language and by whom?
3. What is the structure of a logical function?
4. Give an algebraic definition of C Grammar.
5. Explain the interpretation of complex C Grammar categories as functors.
6. Why is the set of categories in C Grammar infinite and the lexicon finite?
7. Name the formal principle allowing the C Grammar 7.4.4 to generate infinitely

many expressions even though its lexicon and its rule set are finite.
8. Why is the grammar formalism defined in 7.4.4 called bidirectional C Grammar?
9. Would it be advisable to use C Grammar as the syntactic component of the SLIM

theory of language?

Section 7.5
1. Why is C Grammar prototypical of a lexical approach?
2. What is meant by a fragment of a natural language in formal grammar?
3. Explain the relation between a functional interpretation of complex categories in

C Grammar and the model-theoretic interpretation of natural language.
4. Explain the recursive structure in the C Grammar 7.5.4.
5. Explain how the semantic interpretation of C Grammar works in principle.
6. Extend the C Grammar 7.5.4 to generate the sentences The man sent the girl a

letter, The girl received a letter from the man, The girl was sent a letter by the
man. Explain the semantic motivation of your categories.

7. Why are there no large-scale descriptions of natural language in C Grammar?
8. Why are there no efficient implementations of C Grammar?
9. Why is the absence of efficient implementations a serious methodological prob-

lem for C Grammar?
10. Does C Grammar provide a mechanism of natural communication? Would it be

suitable as a component of such a mechanism?



8. Language Hierarchies and Complexity

The historically second elementary grammar formalism was published in 1936 by
the American logician Emil POST (1897–1957). Known as rewrite systems or Post
production systems, they originated in the mathematical context of recursion the-
ory and are closely related to automata theory and computational complexity the-
ory.

Rewrite systems were first applied to natural language by Chomsky (1957) under
the new name of phrase structure grammars1 and the general heading of generative
grammar. Based on PS Grammar, Chomsky and others developed a series of derived
formalisms initially called transformational grammars.

Section 8.1 provides an algebraic definition of PS Grammar and restrictions on the
form of PS rules which result in regular, context-free, context-sensitive, and unre-
stricted PS Grammars. Section 8.2 explains four basic degrees of complexity and re-
lates them to different kinds of PS Grammar. Section 8.3 illustrates the notion of gen-
erative capacity with applications of PS Grammar to artificial languages. Section 8.4
applies context-free PS Grammar to natural language and defines the linguistic con-
cept of constituent structure. Section 8.5 explains the constituent structure paradox
and shows why adding transformations makes the resulting PS Grammar formalism
undecidable.

1 Apparently, Chomsky forgot to mention Post’s contribution. This was commented on by
Bar-Hillel (1964) as follows:

This approach [i.e., rewriting systems] is the standard one for the combinato-
rial systems conceived much earlier by Post [1936], as a result of his penetrat-
ing researches into the structure of formal calculi, though Chomsky seems to have
become aware of the proximity of his ideas to those of Post only at a later stage of
his work.

Bar-Hillel (1964), p. 103

This is remarkable insofar as Chomsky’s thesis advisor Harris and Bar-Hillel had been
in close scientific contact since 1947. Moreover, Bar-Hillel and Chomsky discussed “lin-
guistics, logic, and methodology in endless talks” beginning in 1951 (Bar-Hillel 1964,
p. 16).

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_8, © Springer-Verlag Berlin Heidelberg 2014
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8.1 Formalism of PS Grammar

The algebraic definition of PS Grammar resembles that of C Grammar (7.4.2) insofar
as it enumerates the basic components of the system and characterizes each in terms
of set theory.

8.1.1 ALGEBRAIC DEFINITION OF PS GRAMMAR

A PS Grammar is a quadruple <V,VT,S,P> such that

1. V is a finite set of signs,
2. VT is a proper subset of V, called terminal symbols,
3. S is a sign in V minus VT, called the start symbol , and
4. P is a set of rewrite rules of the form α → β , where α is an element of V+ and β

an element of V∗.2

The basic components of PS Grammar are the sets V, VT, and P, plus the start sym-
bol S. The terminal symbols of VT are the word surfaces of the language. The non-
terminal symbols of V minus VT are called the variables. We will use Greek letters to
represent sequences from V∗, uppercase Latin letters to represent individual variables,
and lowercase Latin letters to represent individual terminal symbols.

A PS Grammar generates language expressions by means of rewrite rules, whereby
the sign sequence on the left-hand side is replaced (substituted) by that on the right.
For example, if α → β is a rewrite rule in P and γ, δ are sequences in V∗, then

γαδ ⇒ γβδ

is a direct substitution of the sequence γαδ by the sequence γβδ. In other words, by
applying the rule α → β to the sequence γαδ there results the new sequence γβδ.

The general format of rewrite rules in PS Grammar suggests systematic restrictions
of the following kind, whereby the numbering used here follows tradition:

8.1.2 RESTRICTIONS OF PS RULE SCHEMATA

0. Unrestricted PS rules:
The left- and right-hand sides of a type 0 rule each consist of arbitrary sequences
of terminal and nonterminal symbols.

1. Context-sensitive PS rules:
The left- and right-hand sides of a type 1 rule each consist of arbitrary sequences
of terminal and nonterminal symbols, whereby the right-hand side must be at
least as long as the left.
Example: A B C → A D E C

2 V+ is the positive closure and V∗ is the Kleene closure of V (Sect. 7.2).
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2. Context-free PS rules:
The left-hand side of a type 2 rule consists of exactly one variable. The right-hand
side of the rule consists of a sequence from V+.
Examples: A → BC, A → bBCc, etc.3

3. Regular PS rules:
The left-hand side of a type 3 rule consists of exactly one variable. The right-hand
side consists of exactly one terminal symbol and at most one variable.4

Examples: A → b, A → bC.

Because the rule types become more and more restrictive – from type 0 to type 3 –
the rules of a certain type obey all restrictions of the lower rule types. For example,
the regular type 3 rule

A → bC

complies with the lesser restrictions of the rule types 2, 1, and 0. The context-free type
2 rule

A → BC

on the other hand, while not complying with the type 3 restriction, complies with the
lesser restrictions of the lower rule types 1 and 0, and similarly for type 1 rules.

The different restrictions on the PS Grammar rule schema result in four different
kinds of PS Grammars. PS Grammars which contain only type 3 rules are called
regular, those which contain at most type 2 rules are called context-free, those which
contain at most type 1 rules are called context-sensitive, and those which have no
restrictions on their rules are called unrestricted PS Grammars.

These four kinds of PS Grammar generate in turn four different classes of lan-
guages. They are the regular languages generated by the regular PS Grammars, the
context-free languages generated by the context-free PS Grammars, the context-sen-
sitive languages generated by the context-sensitive PS Grammars, and the recursively
enumerable languages generated by the unrestricted PS Grammars.

The different language classes are properly contained in each other. Thus, the class
of regular languages is a proper subset of the class of context-free languages, which
in turn is a proper subset of the class of context-sensitive languages, which in turn is
a proper subset of the class of recursively enumerable languages.

3 Context-free grammar sometimes uses so-called ‘epsilon rules’ of the form A → ε, where ε

is the empty string. However, epsilon rules can always be eliminated (Hopcroft and Ullman
1979, p. 90, Theorem 4.3). We specify the right-hand side of type 2 rules as a nonempty se-
quence in order to formally maintain the context-free rules as a special form of the context-
sensitive rules (subset relation).

4 This is the definition of right linear PS Grammars. PS Grammars in which the order of
the terminal and the nonterminal symbols on the right-hand side of the rule is inverted are
called left linear. Left and right linear grammars are equivalent (Hopcroft and Ullman 1979,
p. 219, Theorem 9.2).
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The differences in the language classes result from differences in the generative
capacity of the associated kinds of PS Grammar. The generative capacity of a gram-
mar kind is high if a corresponding grammar is able not only to recursively generate
many formal language structures, but can at the same time exclude those which are
not part of the language. The generative capacity of a grammar kind is low, on the
other hand, if the grammar allows only limited control over the structures to be gen-
erated.5

8.2 Language Classes and Computational Complexity

Associated with the generative capacity of a grammar kind and its language class is
the degree of computational complexity, i.e., the amount of computing time and/or
memory space needed to analyze expressions of a certain language class. The compu-
tational complexity increases systematically with the generative capacity.

In short, different restrictions on a grammatical rule schema result in

– different kinds of grammar, which have
– different degrees of generative capacity and generate
– different language classes, which in turn exhibit
– different degrees of computational complexity.

This structural correlation is not limited to PS Grammar, but holds in any well-defined
grammar formalism (8.2.3, 11.5.10).

The complexity of a grammar formalism is traditionally measured on the basis
of an algorithm which implements the grammar formalism as an operational proce-
dure on an abstract automaton (e.g., a Turing machine, a linearly bounded automa-
ton, a push-down automaton, a finite state automaton, etc.). The complexity of the
algorithm is computed as the number of primitive operations6 required to analyze
an arbitrary input expression in the worst possible case (upper bound).7 Thereby

5 For example, the generative capacity of the PS Grammar 7.1.3 for the artificial language
akbk is higher than that of a regular PS Grammar 8.3.2 for the free monoid over {a,b}
(7.1.2). The free monoid contains all the expressions of akbk, but its regular PS Grammar
is unable to exclude the expressions which do not belong to the language akbk.

6 Earley (1970) characterizes a primitive operation as “in some sense the most complex op-
eration performed by the algorithm whose complexity is independent of the size of the
grammar and the input string.” The exact nature of the primitive operation varies from one
grammar formalism to the next.

For example, Earley chose the operation of adding a state to a state set as the primitive
operation of his famous algorithm for context-free grammars (Sect. 9.3). In LA Grammar,
on the other hand, the subclass of C LAGs uses a rule application as its primitive operation
(Sect. 11.4).

7 We are referring here to time complexity.
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the number of primitive operations is counted in relation to the length of the in-
put.

In elementary grammar formalisms, complexity is usually determined for well-
defined subtypes such as the regular, context-free, context-sensitive, and unrestricted
subtypes of PS Grammar, or the C1, C2, C3, B, and A LAGs of LA Grammar. Fur-
thermore, the complexity of a language class is equated with that of the associated
grammar kind. For example, one says the context-free languages have a complexity
of n3 because there exists a known algorithm which for any arbitrary context-free PS
Grammar can analyze any arbitrary input using at most n3 primitive operations, where
n is the length of the input.

There are the following four basic degrees of computational complexity, where n is
the length of the input:

8.2.1 BASIC DEGREES OF COMPLEXITY

1. Linear complexity
n, 2n, 3n, etc.

2. Polynomial complexity
n2, n3, n4, etc.

3. Exponential complexity
2n, 3n, 4n, etc.

4. Undecidable
n · ∞

To get an idea of how these complexity degrees affect practical work, consider the
Limas corpus8 of German. The average sentence length in the Limas corpus is 17.54
word forms (including punctuation marks). Thus, a linear 3 ·n algorithm will require at
most 51 operations for the analysis of an average sentence (with n = 17), a polynomial
n3 algorithm will require at most 4 913 operations, an exponential 3n algorithm will
require at most 127 362 132 operations, and an undecidable algorithm will require at
most 17 · ∞ (=∞) operations.

Garey and Johnson (1979) compare the time needed for solving a problem of n3

(polynomial) and 2n (exponential) complexity relative to different problem sizes as
follows:

8 As explained in Sect. 15.3, the Limas corpus was built in analogy to the Brown and the LOB
corpora, and contains 500 texts of 2000 running word forms each. The texts were selected at
random from roughly the same 15 genres as those of the Brown and LOB corpora in order
to come as close as possible to the desideratum of a balanced corpus which is representative
of the German language in the year 1973.
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8.2.2 TIMING OF POLYNOMIAL VS. EXPONENTIAL ALGORITHMS

In this example, Garey and Johnson use adding the next word as the primitive opera-
tion of their algorithm.

Of a total of 71 148 sentences in the Limas corpus, there are exactly 50 which consist
of 100 word forms or more, whereby the longest sentence in the whole corpus consists
of 165 words.9 Thus, if we apply the measurements of Garey and Johnson to the
automatic analysis of the Limas corpus, an exponential 2n grammar algorithm, though
decidable, could take longer than 1 000 000 000 000 000 centuries in the worst case.
This amount of time is considerably longer than the existence of the universe and
could not be reduced to practical levels by faster machines.

In the case of PS Grammar, the correlation between rule restrictions, grammar kinds,
language classes, and complexity is as follows:

8.2.3 PS GRAMMAR HIERARCHY OF FORMAL LANGUAGES

The above considerations of polynomial and exponential complexity lead to the con-
clusion that only regular and context-free PSGs are computationally suitable for a
description of language. As an alternative to the PS Grammar hierarchy, also called
the Chomsky hierarchy, the LA Grammar hierarchy is defined in Chap. 11.

9 These data were provided by Schulze at CLUE (Computational Linguistics at the
University of Erlangen Nürnberg).
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8.3 Generative Capacity and Formal Language Classes

From a linguistic point of view, the question is whether or not there is a kind of
PS Grammar which generates exactly those structures which are characteristic of nat-
ural language. Let us therefore take a closer look at the structures generated by differ-
ent kinds of PS Grammar.

The kind of PS Grammar which has the most restricted rules, the lowest genera-
tive capacity, and the lowest computational complexity is regular PS Grammar.10 The
generative capacity of a regular PS Grammar permits the recursive repetition of single
words, but without any recursive correspondences.

For example, expressions of the regular language abk consist of one a, followed by
one, two, or more b. A (right linear) PS Grammar for abk is defined as follows:

8.3.1 REGULAR PS GRAMMAR FOR abk (k ≥ 1)

V =def {S, B, a, b}
VT =def {a, b}
P =def {S → a B,

B → b B,
B → b}

Another example of a regular language is the free monoid over {a, b} minus the
zero-element, which is generated by the following PS Grammar:

8.3.2 REGULAR PS GRAMMAR FOR {a,b}+

V =def {S, a, b}
VT =def {a, b}
P =def {S → a S,

S → b S,
S → a,
S → b}

That a regular PS Grammar cannot generate systematic correspondences of arbi-
trary number is illustrated by the contrast between the already familiar context-free
language akbk and the regular language ambk.

10 The class of regular languages is not part of the hierarchy of LA Grammar, though it may
be reconstructed in it (CoL, Theorem 3, p. 138). Instead the LA Grammar hierarchy pro-
vides the alternative linear class of C1 languages. As shown in Sects. 11.5 ff., the class
of C1 languages contains all regular languages, all deterministic context-free languages
which are recognized by an epsilon-free DPDA, as well as many context-sensitive lan-
guages.
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8.3.3 REGULAR PS GRAMMAR FOR ambk (k,m ≥ 1)

V =def {S, S1, S2, a, b}
VT =def {a, b}
P =def {S → a S1,

S1 → a S1,
S1 → b S2,
S2 → b}

The language ambk is regular because the number of a and the number of b in ambk is
open – as indicated by the use of the two superscripts m and k. The language akbk, on
the other hand, exceeds the generative capacity of a regular PS Grammar because it
requires a correspondence between the number of a and the number of b – as indicated
by their having the same superscript k.

The characteristic limitation in the generative capacity of regular PS Grammars fol-
lows in an intuitively obvious way from the restrictions on the associated rule type:
Because the right-hand side of a type 3 rule consists of one terminal and at most one
variable it is impossible to recursively generate even pairwise correspondences – as
would be required by akbk.

The formal proof of the lower generative capacity of regular PS Grammars as com-
pared to the context-free PS Grammars is not trivial, however. It is based on the pump-
ing lemma for regular languages,11 which formally shows that there are languages that
may not be generated by regular PS Grammars.

A pumping lemma for a certain language class shows which structures it can have.
This is done by explicitly listing the basic structural patterns of the language class
such that the infinite set of additional expressions can be pumped, i.e., they can be
shown to consist only of repetitions of the basic structural patterns.

The next grammar kind in the PS Grammar hierarchy is that of context-free PS
Grammars. Examples of context-free languages are akbk (for which a PS Grammar is
defined in 7.1.3 and a C Grammar in 7.4.4) and akb3k defined below.

8.3.4 CONTEXT-FREE PS GRAMMAR FOR akb3k

V =def {S, a, b}
VT =def {a, b}
P =def {S → a S b b b,

S → a b b b}

This kind of grammar is called context-free because the left-hand side of a type 2 rule
consists by definition of a single variable (8.1.2) – without a surrounding ‘context’ of
other signs.12

11 Hopcroft and Ullman (1979), pp. 55f.
12 This notion of ‘context’ is peculiar to the terminology of PS Grammar and has nothing to

do with the speaker-hearer-internal context of use (Chaps. 3–6).
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The context-free rule format results in another restriction on generative capacity:
context-free grammars may recursively generate correspondences, but only those of
the type inverse pair like a b c . . . c b a.13

This inverse pair structure characteristic of context-free languages shows up clearly
in the derivation of context-free expressions. Consider, for example, the context-free
language WWR, where W represents an arbitrary sequence of words, e.g., abcd, and
WR stands for the inverse sequence,14 e.g., dcba.

8.3.5 CONTEXT-FREE PS GRAMMAR FOR WWR

V =def {S, a, b, c, d}
VT =def {a, b, c, d}
P =def {S → a S a,

S → b S b,
S → c S c,
S → d S d,
S → a a,
S → b b,
S → c c,
S → d d}

The increased generative capacity of the class of context-free languages as com-
pared to the class of regular languages is associated with an increase in computational
complexity. While the class of regular languages parses in linear time, the class of
context-free languages parses in polynomial time (8.2.3).

The generative capacity of context-free PS Grammars is still rather limited.15 As a
classic example of a language exceeding the generative capacity of context-free PS
Grammar, consider akbkck. Expressions of this language consist of three equally long
sequences of a, b, and c, for example, as in

a b c, a a b b c c, a a a b b b c c c, etc.

The language akbkck cannot be generated by a context-free PS Grammar because it
requires a correspondence between three different parts – which exceeds the pairwise
reverse structure of the context-free languages such as the familiar akbk and WWR.

13 Each context-free language is homomorphic with the intersection of a regular set and a
semi-Dyck set (Chomsky-Schützenberger Theorem). See Harrison (1978), pp. 317f.

14 The superscript R in WWR stands mnemonically for reverse.
15 The class of context-free languages is not part of the hierarchy of LA Grammar, though

it may be reconstructed in it (CoL, Theorem 4, pp. 138). See also Sect. 12.3, foot-
note 10. Instead the LA Grammar hierarchy provides the alternative polynomial class of
C2-languages. As shown in Sect. 12.4, the class of C2-languages contains most, though not
all, context-free languages, as well as many context-sensitive languages.
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Another language exceeding the generative capacity of context-free PS Grammars
is WW, where W is an arbitrary sequence of words. While the context-free language
WWR defined in 8.3.5 consists of expressions like

aa
abba

abccba
abcddcba

. . .

which have a pairwise reverse structure, the context-sensitive language WW consists
of expressions like

aa
abab

abcabc
abcdabcd

. . .

which do not. Thus, despite the close resemblance between WWR and WW, it is simply
impossible to write a PS Grammar like 8.3.5 for WW.

While akbkck and WW show in an intuitively obvious way that there are languages
which cannot be generated by context-free PS Grammar, the formal proof is by no
means trivial. As in the case of the regular languages, it is based on a pumping lemma,
this time for the context-free languages.16

The next larger language class in the PS Grammar hierarchy is the context-sensitive
languages, which are generated by PS Grammars using type 1 rules.

Almost any language one can think of is context-sensitive; the only known proofs
that certain languages are not CSL’s are ultimately based on diagonalization.17

Hopcroft and Ullman (1979), p. 224

Because it is impossible to exhaustively list the basic patterns of practically all struc-
tures “one can think of,” there is no pumping lemma for the class of context-sensitive
languages.

The structure of a type 1 or context-sensitive rule is as follows:

8.3.6 STANDARD SCHEMA OF CONTEXT-SENSITIVE RULES

α1Aα2 → α1βα2, where β is not the empty sequence.

In PS Grammar, the term context-sensitive is interpreted in contrast to the term
context-free. While a context-free type 2 rule allows nothing but a single variable

16 Hopcroft and Ullman (1979) , pp. 125f.
17 One of the earliest and simplest examples of diagonalization is the Ackermann Function

(Ackermann 1928).
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on the left-hand side, a context-sensitive type 1 rule may surround the variable with
other symbols. As illustrated in 8.3.6, a type 1 rule is context-sensitive because the
variable A may be rewritten as β only in the specific ‘context’ α1__α2.

The possibility of specifying a particular environment (context) for the variable on
the left-hand side of a type 1 rule greatly increases the control and thus the generative
power of the context-sensitive PS Grammars. This is illustrated in the following PS
Grammar for akbkck:

8.3.7 PS GRAMMAR FOR CONTEXT-SENSITIVE akbkck

V =def {S, B, C, D1, D2, a, b, c}
VT =def {a, b, c}
P =def {S → a S B C, rule 1

S → a b C, rule 2
C B → D1 B, rule 3a
D1 B → D1 D2, rule 3b
D1 D2 → B D2, rule 3c
B D2 → B C, rule 3d
b B → b b, rule 4
b C → b c, rule 5
c C → c c} rule 6

The rules 3a–3d jointly have the same effect as the (monotonic)

rule 3 C B → B C.

The above PS Grammar uses the rules 3a–3d because the equivalent rule 3 does not
comply with the simplifying assumption that only one variable on the left-hand side
of a context-sensitive rule may be replaced.

The crucial function of the context for controlling the three correspondences in the
expressions of akbkck is shown in the following derivation of a a a b b b c c c. For
simplicity, the rules 3a–3d are combined into the equivalent rule 3.

8.3.8 DERIVATION OF a a a b b b c c c
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The high generative capacity of the context-sensitive PS Grammars is based on the
possibility of changing the order of sequences already derived. The reordering of
sequences takes place in the transition from the intermediate sequence 4 to 7.

The possibility of context-sensitively changing the order of sequences provides for
a degree of control which is much higher than in context-free PS Grammars. The cost,
however, is a high degree of computational complexity. In order to correctly recon-
struct automatically which sequence of context-sensitive rule applications resulted in
a given expression, a potentially exponential number of reordering possibilities must
be checked.

This kind of search space is so large that there exists no practical parsing algorithm
for the class of context-sensitive PS Grammars. In other words, the class of context-
sensitive languages is computationally intractable.

The context-sensitive languages are a proper subset of the recursive languages.18

The class of recursive languages is not reflected in the PS Grammar hierarchy. This
is because the PS rule schema does not provide a suitable restriction (8.1.2) such that
the associated PS Grammar class would generate exactly the recursive languages.19

A language is recursive if and only if it is decidable, i.e., if there exists an algorithm
which can determine in finitely many steps for arbitrary input whether or not the input
belongs to the language. An example of a recursive language which is not context-
sensitive is the Ackermann function.20

The largest language class in the PS Grammar hierarchy is the recursively enumer-
able languages, which are generated by unrestricted or type 0 rewrite rules. In unre-
stricted PS Grammars, the right-hand side of a rule may be shorter than the left-hand
side. This characteristic property of type 0 rules provides for the possibility of deleting
parts of sequences already generated and is the source of undecidability. The decision
of whether or not an expression of a recursively enumerable language is well-formed
may thus take not just a very long time (8.2.2), but forever.21

8.4 PS Grammar for Natural Language

A simple application of PS Grammar to natural language is illustrated in the following
definition. In order to facilitate comparison, it generates the same sentence as the
C Grammar 7.5.4.

18 Hopcroft and Ullman (1979), p. 228, Theorem 9.8.
19 In the hierarchy of LA Grammar, in contrast, the class of recursive languages is formally

defined as the class of A-languages, generated by unrestricted LA Grammars (11.2.2). Fur-
thermore, the class of context-sensitive languages is formally defined as the class of B
languages, generated by bounded LA Grammars.

20 Hopcroft and Ullman (1979) , p. 175, 7.4.
21 The class of recursively enumerable languages is not part of the LA Grammar hierarchy,

though it may be reconstructed in it (footnote 10 at the end of Sect. 11.2).
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8.4.1 PS GRAMMAR FOR EXAMPLE 7.5.3

V =def {S, NP, VP, V, N, DET, ADJ, black, dogs, little, sleep, the}
VT =def {black, dogs, little, sleep, the}
P =def {S → NP VP,

VP → V,
NP → DET N,
N → ADJ N,
N → dogs,
ADJ → little,
ADJ → black,
DET → the,
V → sleep}

The form of this PS Grammar is context-free: it is not yet context-sensitive be-
cause the left-hand side of the rules consists of only one variable; it is not regular
any more because the right-hand side of some rules contains more than one vari-
able.

Like the C Grammar derivation 7.5.3, the corresponding derivation based on the
above PS Grammar derivation can be represented as a tree:

8.4.2 PS GRAMMAR ANALYSIS OF EXAMPLE 7.5.3

Such trees are called phrase structures in PS Grammar. The category symbols in
a phrase structure tree are called nodes. There are two formal relations between
nodes: dominance and precedence. For example, the node S dominates the nodes
NP and VP in accordance with the rule S → NP VP. At the same time this rule
specifies precedence: the NP node is located in the tree to the left of the VP
node.

In comparison to C Grammar, which codes the combinatorics of a language into the
complex categories of its word forms and uses only two rule schemata for compo-
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sition, PS Grammar uses only elementary categories the combinatorics of which are
expressed in terms of a multitude of rewrite rules.

Even the lexicon, which is treated in C Grammar as categorized sets of word forms
(7.5.4), is handled in PS Grammar by certain rewrite rules. They are called termi-
nal rules because they have a terminal symbol (word) on their right-hand side. The
remaining rules, called nonterminal rules, generate the sentence frames of the PS
Grammar, into which the terminal rules insert various word forms.

In addition to the formal differences between C and PS Grammar, their respective
analyses of natural language are linguistically motivated by different empirical goals.
The goal of C Grammar is to characterize the functor-argument structure of natural
language, whereas PS Grammar aims to represent the constituent structure of natural
language.

Constituent structure represents linguistic intuitions about which parts in a sentence
belong most closely together semantically. The principle of constituent structure is
defined as a formal property of phrase structure trees.

8.4.3 DEFINITION OF CONSTITUENT STRUCTURE

1. Words or constituents which belong together semantically must be dominated
directly and exhaustively by a node.

2. The lines of a constituent structure may not cross (nontangling condition).

According to this definition, the following analysis of the sentence the man read a
book is linguistically correct:

8.4.4 CORRECT CONSTITUENT STRUCTURE ANALYSIS

The following analysis, in contrast, violates the definition of constituent structure:
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8.4.5 INCORRECT CONSTITUENT STRUCTURE ANALYSIS

While formally possible, this analysis is incorrect linguistically because according to
the PS Grammarians’ intuition read and a book belong semantically together and thus
must be dominated directly and exhaustively by a node (as illustrated by the correct
analysis).

Historically, the notion of constituent structure is quite recent. It evolved from the
immediate constituent analysis of the American structuralist BLOOMFIELD (1887–
1949) and the distribution tests of his student Harris. In Bloomfield’s main work Lan-
guage of 1933, immediate constituents do not take center stage, however, and are
mentioned on only four of 549 pages. They are briefly sketched on pages 161 and 167
using simple sentences and later applied to morphology (op.cit., pp. 209f., 221f.).

The principle of immediate constituents will lead us, for example, to class a form
like gentlemanly not as a compound word, but as a derived secondary word, since the
immediate constituents are the bound form -ly and the underlying form gentleman.

Bloomfield (1933), p. 210

This statement may be translated into the following tree structures:

8.4.6 IMMEDIATE CONSTITUENTS IN PS GRAMMAR

The example gentlemanly is also discussed in Harris (1951), pp. 278–280, where the
methodological innovation of distribution tests is introduced.

Distribution tests are realized either as substitution tests or as movement tests. Their
goal is to distinguish grammatically correct from grammatically incorrect substitu-
tions or movements.
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8.4.7 SUBSTITUTION TEST

The substitution on the left is considered correct because it results in a sentence which
is grammatically as well formed as the original. The substitution on the right is incor-
rect because it turns a well-formed input sentence into an ungrammatical result.

Analogous considerations hold for movement tests:

8.4.8 MOVEMENT TEST

For the linguists of American structuralism, the distribution tests were important
methodologically in order to objectively support their intuitions about the correct seg-
mentation of sentences. The segmentation of sentences and the concomitant hypothe-
ses about more or less closely related subparts were needed in turn to distinguish
between linguistically correct and incorrect phrase structure trees.

Such a distinction seemed necessary because for any finite string the number of
possible phrase structures is infinite.22 This constitutes an embarrassment of riches:
the possible phrase structures should not all be equally correct linguistically.

The huge variety of possible trees holds primarily for isolated sentences outside
a formal grammar. Once the structural principles of a language are known and for-
mulated as a PS Grammar, however, sentences are assigned their phrase structure(s)
by the grammar. Compared to the number of possible phrase structure trees for an
isolated sentence outside the grammar, the number of trees assigned to it by the gram-
mar for the language in question is usually greatly reduced. Given an unambiguous
PS Grammar, for example, there is by definition at most one tree per well-formed
sentence.

22 Even if phrase structures of the form A–B–C. . . A are excluded, the number of different
phrase structure trees still grows exponentially with the length of the input. From a formal
as well as an empirical point of view, however, structures like A–B–C. . . A are legitimate
in phrase structure grammar.
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In the case of context-free artificial languages, the structural principles are suffi-
ciently simple to allow for the definition of adequate formal PS Grammars (e.g., 8.3.1,
8.3.2, 8.3.3, 8.3.4, 8.3.5). When there are several essentially different PS Grammars
which are equally adequate for the same context-free language, there is no rational
reason to argue about which of them assigns the ‘correct’ phrase structure trees.

In the case of natural languages, on the other hand, the structural principles are
still unknown. Thus it is an open question which PS Grammar for a single sentence or
small set of sentences might turn out to be best suited for the correct extension to cover
the whole language. In order to guide the long-term development of PS Grammars for
natural language, an empirical criterion was needed.

For this, the intuitive principle of constituent structure was chosen, supported by the
associated substitution and movement tests. It has not prevented, however, a constant
debate within nativism over which phrase structures for natural language are linguis-
tically correct and why.

From the viewpoint of formal language theory, the cause of this fruitless linguistic
debate is the lack of complete PS Grammars – either elementary or derived. That over
forty years of substantially funded research has not produced a complete formal gram-
mar for a single natural language might perhaps be taken as a hint that the approach
of constituent structure in combination with PS Grammar may not be quite optimal.

8.5 Constituent Structure Paradox

From the viewpoint of the SLIM theory of language, there are several objections to
the principle of constituent structure (8.4.3). First, constituent structure and the dis-
tribution tests claimed to support it run counter to the time-linear structure of natural
language. Second, the resulting phrase structure trees have no communicative pur-
pose. Third, the principles of constituent structure cannot always be fulfilled.

This is because the conditions of constituent structure require that the parts which
belong together semantically are positioned right next to each other in the natural
language surface. Yet there are expressions in natural language – called discontinuous
elements – in which this is not the case.

For example, there is general agreement that in the sentence

Peter looked the word up.

the discontinuous elements looked and up are more closely related semantically than
either the adjacent expressions looked – the word or the word – up.

Discontinuous elements are the structural reason why the principle of constituent
structures cannot always be fulfilled in context-free PS Grammars for natural lan-
guage. This structural problem has been called the constituent structure paradox.23 It
is illustrated by the following alternative tree structures:

23 CoL, p. 24.



160 8. Language Hierarchies and Complexity

8.5.1 VIOLATING THE SECOND CONDITION OF 8.4.3

Here the semantically related subexpressions looked and up are dominated directly
and exhaustively by a node, thus satisfying the first condition of 8.4.3. The analysis
violates the second condition, however, because the lines in the tree cross.

8.5.2 VIOLATING THE FIRST CONDITION OF 8.4.3

Here the lines do not cross, satisfying the second condition. The analysis violates the
first condition, however, because the semantically related expressions looked – up,
or rather the nodes V and DE dominating them, are not exhaustively dominated by
a node. Instead, the node directly dominating V and DE also dominates the NP the
word.

From the viewpoint of formal language theory, the constituent structure paradox is
caused by the fact that the generative power of context-free PS Grammars is insuf-
ficient to handle discontinuous elements in the fashion prescribed by the conditions
of 8.4.3. This empirical problem has been known since the early 1950s.24

24 Bar-Hillel wrote in 1960 (Bar-Hillel 1964, p. 102) that he had abandoned his 1953 work on
C Grammar because of analogous difficulties with the discontinuous elements in sentences
like He gave it up.
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All natural languages have discontinuous elements of one kind or another. In order
to nevertheless maintain the principle of constituent structure as much as possible,
Chomsky (1957) turned Harris’ methodologically motivated substitution and move-
ment tests into generative rules called transformations, which he claimed to be innate
(Chomsky 1965, pp. 47f.).

A transformation rule takes a phrase structure tree as input and produces a modified
phrase structure tree as output. In transformational grammar, many transformations
are ordered into a transformational component and applied one after the other to the
phrase structure of the input. The input and output conditions of a transformation are
formally specified as patterns with variables, which are called indexed bracketings.

8.5.3 EXAMPLE OF A FORMAL TRANSFORMATION

[[V DE]V′ [DET N]NP]VP ⇒ [V [DET N]NP DE]VP

An application of this transformation is illustrated as follows:

8.5.4 APPLYING THE TRANSFORMATION 8.5.3

In Standard Theory (ST, Chomsky 1965), the input to the transformational component
is generated by a context-free PS Grammar. These ‘deep structures’ must satisfy the
conditions 8.4.3 of constituent structure, but need not correspond to a grammatical
sequence (as in the tree on the left).

If the input pattern (indexed bracketing) of a transformational rule has been matched
successfully onto a phrase structure, it is mapped to another phrase structure in accor-
dance with the output pattern of the transformation. After the application of one or
more transformations, a surface structure is obtained. The phrase structure of the sur-
face must correspond to a grammatical sequence, but need not fulfill the conditions of
constituent structure (as in the tree on the right.)

Transformations like the one illustrated above are regarded as ‘meaning preserv-
ing’ – just like the examples in 4.5.2. This approach is supposed to characterize the
innate human language faculty even though the transformations do not have any com-
municative function.
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From a mathematical viewpoint, a mechanism designed to recursively modify an
open set of input structures always results in high degrees of complexity. This has
been demonstrated with the PS Grammar 8.3.7 for the simple context-sensitive lan-
guage akbkck. Yet, while context-sensitive languages are ‘only’ exponential, transfor-
mational grammar is equivalent to a Turing machine, generates the recursively enu-
merable languages, and is therefore undecidable.

Initially, Chomsky had hoped to avoid this consequence by imposing a formal re-
striction called recoverability of deletions. According to this condition, a transforma-
tion may delete a node only if it can be reconstructed (recovered) via well-defined
access to a copy of the node and the subtree dominated by it.

The so-called Bach-Peters sentences showed, however, that the recoverability of
deletions does not always have the desired effect.

8.5.5 EXAMPLE OF A BACH-PETERS SENTENCE

The man who deserves it will get the prize he wants.

This sentence contains two noun phrases with relative clauses. Each clause contains
a pronoun (i.e., it, he) for which the corresponding noun phrase (i.e., the prize he
wants, the man who deserves it) serves as the ante- or postcedent (see Sect. 6.2).
Assuming that the pronouns are derived transformationally from full underlying noun
phrases which are coreferential with their ante- or postcedent, the deep structure of
the sentence will have the following structure:

8.5.6 DEEP STRUCTURE OF A BACH-PETERS SENTENCE

Given the surface of the sentence, the transformational algorithm is supposed to pro-
duce a deep structure from which this surface may be correctly derived transforma-
tionally. Due to the structure of the example, the algorithm will consider larger and
larger deep structures while observing the recoverability of deletions.

For example, the algorithm will postulate the full noun phrase [the man who de-
serves it] as the deep structure and antecedent of the pronoun he. This deep structure
in turn contains the pronoun it, for which the algorithm will postulate the full noun
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phrase [the price which he deserves] as postcedent. This deep structure in turn con-
tains the pronoun he, etc.

This procedure can be continued indefinitely in both relative clauses without ever
stopping (the halting problem). The formal proof that transformational grammar is
undecidable and generates the class of the recursively enumerable languages was es-
tablished 1969 by Peters and Ritchie25 and published in 1973.

Later variants of nativism, such as LFG, GPSG, and HPSG, do without transfor-
mations, trying to deal with the constituent structure paradox in other ways. In these
derived formalisms of PS Grammar, the conditions of constituent structure need only
be fulfilled when permitted by the language input. Otherwise (as in cases of dis-
continuous elements) the intuitions about what is most closely semantically related
are not expressed in terms of PS trees, but alternatively in terms of feature struc-
tures.

In this way, constituent structures have failed to maintain their alleged status as a
universal, innate characteristic of human language and as a methodologically mean-
ingful principle. Therefore, one may well ask why systems like GPSG, LFG, and
HPSG continue to hang on to constituent structure as a central principle of their the-
ories. Furthermore, in terms of complexity these later systems are no improvement
over transformational grammar: they generate the class of recursively enumerable lan-
guages and are undecidable.26

Exercises

Section 8.1
1. State an algebraic definition of PS Grammar.
2. What is the difference between terminal and nonterminal symbols in PS Gram-

mar?
3. By whom and when was PS Grammar invented, under what name, and for what

purpose?

25 In active consultation with Chomsky (personal communication by Bob Ritchie, Stanford,
1983).

26 Cf. Barton et al. (1987). If context-free rule loops like A → B → . . . → A are forbidden, the
complexity of LFG is exponential. However, because such loops are formally legal within
context-free PS Grammar, this restriction is not really legitimate from the viewpoint of
complexity theory. Besides, even an exponential complexity is much too high for compu-
tational applications.
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4. By whom and when was PS Grammar first used for describing natural language?
5. Describe the standard restrictions on the rules of PS Grammar.
6. Explain the term generative capacity.

Section 8.2
1. Explain the relation between special kinds of PS Grammar, formal language

classes, and different degrees of complexity.
2. Name the main classes of complexity. Why are they independent of specific for-

malisms of generative grammar?
3. What is the complexity of language classes in the PS hierarchy?
4. What is the average sentence length in the Limas corpus?
5. What is the maximal sentence length in the Limas corpus?
6. How much time would an exponential algorithm require in the worst case to

parse the Limas corpus?
7. Explain the PS Grammar hierarchy of formal languages.
8. Which language classes in the PS Grammar hierarchy are of a complexity still

practical for computational linguistics?

Section 8.3
1. Define a PS Grammar which generates the free monoid over {a, b, c}. Classify

this language, called {a,b, c}+, within the PS Grammar hierarchy. Compare the
generative capacity of the grammar for {a,b, c}+ with that for akbkck. Which is
higher and why?

2. Where does the term context-free come from in PS Grammar?
3. What kinds of structures can be generated by context-free PS Grammars?
4. Name two artificial languages which are not context-free. Explain why they ex-

ceed the generative power of context-free PS Grammars.
5. Define a PS Grammar for akb2k. Explain why this language fulfills the context-

free schema pairwise inverse.
6. Define a PS Grammar for camdybn. What are examples of well-formed expres-

sions of this artificial language? Explain why it is a regular language.
7. Why would 8.3.6 violate the definition of context-sensitive PS Grammar rules if

β were zero?
8. What is a pumping lemma?
9. Why is there no pumping lemma for the context-sensitive languages?

10. Are the recursively enumerable languages recursive?
11. Name a recursive language which is not context-sensitive.

Section 8.4
1. State the definition of constituent structure.
2. Explain the relation between context-free PS Grammars and phrase structure

trees.
3. Describe how the notion of constituent structure developed historically.
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4. Name two kinds of distribution tests and explain their role for finding correct
constituent structures.

5. Why was it important to American structuralists to segment sentences correctly?

Section 8.5
1. Describe the notion of a discontinuous element in natural language and explain

why discontinuous elements cause the constituent structure paradox.
2. How does transformational grammar try to solve the problem caused by discon-

tinuous elements?
3. Compare the goal of transformational grammar with the goal of computational

linguistics.
4. What is the generative capacity of transformational grammar?
5. Explain the structure of a Bach-Peters sentence in relation to the recoverability of

deletions condition. Which mathematical property was shown with this sentence?
Is it a property of natural language or of transformational grammar?



9. Basic Notions of Parsing

This chapter investigates which formal properties make a formal grammar suitable
for automatic language analysis and which do not. For this purpose, context-free
PS Grammar and its parsers will be used as our main example.

Section 9.1 describes the basic structure of parsers and explains how the declarative-
procedural distinction applies to the relation between formal grammars and parsers.
Section 9.2 discusses the relation between context-free PS Grammar and standard
C Grammar, and summarizes the relations between the notions of language, formal
grammars, subtypes of grammars, subclasses of languages, parsers, and complexity.
Section 9.3 explains the principle of type transparency and illustrates with an Earley
algorithm analysis of akbk that context-free PS Grammar is not type-transparent. Sec-
tion 9.4 shows that the principle of possible substitutions, on which derivations in PS
Grammar are based, does not permit input-output equivalence of PS Grammar with
either its parsers or the speaker-hearer. Section 9.5 explains the mathematical, compu-
tational, and psychological properties which an empirically adequate formal grammar
for natural language must have.

9.1 Declarative and Procedural Aspects of Parsing

Parsers1 for artificial languages are used in computer science for transforming one
programming level into another, for example in compilation. Parsers for natural lan-
guages are used for automatic word form recognition as well as automatic syntac-
tic and semantic analysis. Accordingly, one may distinguish between morphology
parsers, syntax parsers, and semantic parsers.

Morphology parsers (Chaps. 13–15) take a word form as input and analyze it by
(i) segmenting its surface into allomorphs, (ii) characterizing its syntactic combi-
natorics (categorization), and (iii) deriving the base form (lemmatization). Syntax
parsers (Chaps. 16–18) take a sentence as input and render as output an analysis of
its grammatical structure, e.g., the constituent structure in PS Grammar or the time-
linear buildup and canceling of valency positions in LA Grammar. Semantic parsers

1 As explained in Sect. 1.3, a parser is a computer program which takes language expressions
as input and produces some other representation, e.g., a grammatical analysis, as output.

R. Hausser, Foundations of Computational Linguistics,
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(Chaps. 22–24) complement the syntactic analyses by deriving associated semantic
representations.

For modeling the mechanism of natural language communication on the computer,
these different kinds of parsers need to be integrated into an overall functional system.
For example, syntax parsers presuppose automatic word form recognition and thus
require a morphology parser of some kind. Semantic parsers presuppose syntactic
analysis and thus require a syntax parser (unless syntactic and semantic parsing are
combined, as in the SLIM theory of language).

Common to all kinds of parsers is the distinction between (i) the structural descrip-
tion of the expressions to be analyzed and (ii) the computational algorithm of the
automatic analysis procedure. In modern parsers, these two aspects are separated sys-
tematically by treating the structural description by means of a formal grammar which
is interpreted and applied by the computational algorithm.

In other words, a modern parser may load one of the arbitrary formal grammars Gi,
Gj, Gk of a certain formalism2 and analyze a language Lj by interpreting the associated
grammar Gj. In the automatic analysis of Lj expressions, a clear distinction is made
between the contributions of (i) the grammar Gj and (ii) the parser for the whole class
of formal grammars Gi, Gj, Gk.3

The separate handling of the grammar and the parsing algorithm corresponds to a
distinction which is aspired to in computer science in general, namely the systematic
separation of the declarative specification and the procedural implementation in the
solution of a computational problem.

9.1.1 DECLARATIVE AND PROCEDURAL ASPECTS IN LINGUISTICS

– The declarative aspect of computational language analysis is represented by a for-
mal grammar, written for the specific language to be analyzed within a general,
mathematically well-defined formalism.

– The procedural aspect of computational language analysis comprises those parts
of the computer program which interpret and apply the general formalism in the
automatic analysis of language input.

2 For example, a context-free PS Grammar like 7.1.3, 8.3.4, 8.3.5, or a C LAG like 10.2.2,
10.2.3, 11.5.1, 11.5.2, 11.5.4, 11.5.6–11.5.8.

3 There is general agreement that the formal rules of a grammar should not be formulated
in the programming language directly. Such an implicit use of a formal grammar has the
disadvantage that the resulting computer program does not show which of its properties are
theoretically accidental (reflecting the programming environment or stylistic idiosyncrasies
of the programmer) and which are theoretically necessary (reflecting the formal analysis of
the language described). Another disadvantage of failing to separate between the formal
grammar and the parsing algorithm is that the software works only for a single language
rather than a whole subtype of formal grammars and their languages.
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The distinction between the declarative and procedural aspects of a parser is especially
clear if the formal grammar leaves open certain properties which an automatic parser
must decide one way or another.

Consider, for example, the following context-free PS Grammar.

rule 1: A → B C
rule 2: B → c d
rule 3: C → e f

The distribution of variables ensures implicitly that, in a top-down derivation, rule 1
is applied before rule 2 and rule 3. However, the decision of whether rule 2 should be
applied before rule 3, or rule 3 before rule 2, or both at once, remains open.

For the declarative specification of context-free PS Grammars, such a partial rule
ordering is sufficient. For a computer program, however, a complete rule order-
ing must be decided explicitly – even if it may be irrelevant from a theoretical
point of view. Those ordering decisions which go beyond the declarative specifica-
tion of a formal grammar, or which – for reasons of the parsing algorithm – run
counter to the conceptual derivation order of the grammar (9.3.4), are called pro-
cedural.

For a given formalism (e.g., context-free PS Grammar) different parsing algo-
rithms may be developed in different programming languages. The result is dif-
ferent procedural realizations which take the same declarative grammars as input.
For example, two parsing algorithms (e.g., the Earley algorithm and the CYK algo-
rithm) implemented in two programming languages (e.g., Lisp and C, respectively)
will produce results for (i) the same grammar (e.g., 7.1.3 for akbk) and (ii) the
same language input (e.g., aaabbb) which are identical from a declarative point of
view.

General parsers are practical for a given grammar kind only, however, if its complex-
ity is not too high. Therefore, there exist general parsers for the classes of regular and
context-free PS Grammars, while no practical parsers can be written for the classes of
context-sensitive and, a fortiori, unrestricted PS Grammars.

9.2 Fitting Grammar onto Language

Deciding where in the PS hierarchy (8.2.3) the natural languages might belong is not
only of academic interest, but determines whether or not the natural languages may be
parsed efficiently within PS Grammar. For reasons of efficiency it would be optimal
if the natural languages could be shown to belong in the class of regular languages –
because then their PS Grammar analyses could be parsed in linear time.

There are, however, natural language structures in which the surface is obviously
context-free rather than regular, e.g., center-embedded relative clauses in German.
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9.2.1 CONTEXT-FREE STRUCTURE IN GERMAN

The structure of this sentence corresponds to the abstract schema ‘noun_phrase1

noun_phrase2 . . . verb_phrase2 verb_phrase1’, which in turn corresponds to abc. . . cba.
The structure is context-free because there is no grammatical limit on the number
of embeddings. Given that context-free PS Grammars are of n3 complexity (Earley
1970), a PS grammatical analysis of natural language is at least polynomial.

The next question is whether or not natural language can be shown to belong in the
PS Grammar class of context-free languages. The answer to this question is less clear
than in the case of the regular languages.

Chomsky (1957) and (1965) expanded context-free PS Grammar into the derived
formalism of transformational grammar by arguing that PS Grammar alone was in-
sufficient to formulate what he considered “linguistic generalizations” (4.5.2, 8.5.4).
In addition, Shieber (1985) presented sentences from Swiss German with the context-
sensitive structure of WW’, which were intended to prove – in analogy to 9.2.1 – that
the natural languages are at least context-sensitive.

9.2.2 CONTEXT-SENSITIVE STRUCTURE IN SWISS GERMAN

mer em Hans es huus hälfed aastriiche
we the Hans the house help paint

The formal structure of this example is analyzed as a b a’ b’ (with a = the Hans,
b = the house, a’ = help, and b’ = paint). This is not context-free because it doesn’t
have an inverse structure – like the context-sensitive language WW. If this argument is
accepted, the PS grammatical analysis of natural language is at least context-sensitive.
It is thus of exponential complexity and requires billions and billions of centuries for
the analysis of longer sentences in the worst case (8.2.2).

To avoid this implausible conclusion, Harman (1963) and Gazdar (1982) each pre-
sented sizable PS Grammar systems intended to show that there are no structures in
natural language which could not be handled in a context-free fashion. Harman’s pro-
posal came at a time when complexity-theoretic considerations were not widely un-
derstood and transformational grammar was pursued with undiminished enthusiasm.
Also, Harman did not provide a detailed linguistic motivation for his system.

At the time of Gazdar’s proposal, on the other hand, awareness of complexity-
theoretic considerations had increased. Also, Gazdar did not employ context-free
PS Grammar directly, but used the additional mechanism of metarules to define the
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derived PS Grammar formalism of GPSG. The purpose of the metarules was to com-
bine huge numbers of context-free PS rules,4 in order to formulate the linguistic gen-
eralizations which he and others considered important at the time.

In order to ensure that metarules would not increase the complexity of GPSG, Gaz-
dar formulated the finite closure condition. This condition, however, was rejected as
a linguistically unmotivated formal trick5 – and without it GPSG is not context-free,
but rather recursively enumerable and therefore undecidable.

If the natural languages are not context-free – and the majority of theoretical lin-
guists takes this view – what other formal language class does natural language belong
to? Here we should remember that the class of context-free languages is the result of
using a certain rule type (i.e., type 2) of a certain formalism (i.e., PS Grammar).

On the one hand, there is no reason why this particular formalism and this particu-
lar rule type – resulting in the pairwise inverse structure of context-free languages –
should be characteristic of natural language. On the other hand, the context-free lan-
guages are the largest class offered by PS Grammar with a mathematical complexity
which is sufficiently low to be of any practical interest.

The assumption that the natural languages are not context-free implies one of the
following two conclusions:

1. PS Grammar is the only elementary formalism of formal grammar, for which
reason one must accept that the natural languages are of high complexity and
thus computationally intractable.

2. PS Grammar is not the only elementary formalism of formal grammar. Instead,
there are other elementary formalisms which define other language hierarchies
whose language classes are orthogonal to those of PS Grammar.

In light of the fact that humans process natural language in a highly efficient manner,
the first conclusion is implausible. The second conclusion, on the other hand, raises
the question of what concrete alternatives are available.

From a historical point of view, a natural first step in the search for new formal
language classes is to analyze the generative capacity and complexity of C Grammar
(Sect. 7.4). For this, the easiest strategy is a comparison of the formal properties of C
and PS Grammar, whereby one of the following three possible relations must hold:

9.2.3 POSSIBLE RELATIONS BETWEEN TWO GRAMMAR FORMALISMS

– No equivalence
Two formalisms are not equivalent if they accept different language classes; this
means that the formalisms have different generative capacities.

4 “Literally trillions and trillions of rules,” Shieber et al. (1983).
5 Uszkoreit and Peters (1986).
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– Weak equivalence
Two formalisms are weakly equivalent if they accept the same language classes;
this means that the formalisms have the same generative capacity.

– Strong equivalence
Two formalisms are strongly equivalent if they are (i) weakly equivalent, and more-
over (ii) produce the same structural descriptions; this means that the formalisms
are no more than notational variants.

Historically, it would have been desirable for the development of modern linguistics
if the elementary formalisms of C and PS Grammar had turned out to be not equivalent
because in this way one would have had a true alternative to the class of context-
free languages. In fact, however, it was discovered early on that C Grammar and PS
Grammar are weakly equivalent.

The problem arose of determining the exact relationships between these types of
[PS ]grammars and the categorial grammars. I surmised in 1958 that the BCGs [Bidi-
rectional Categorial Grammar à la 7.4.2] were of approximately the same strength [as
context-free phrase structure grammars]. A proof of their equivalence was found in
June of 1959 by Gaifman. . . . The equivalence of these different types of grammars
should not be too surprising. Each of them was meant to be a precise explicatum
of the notion immediate constituent grammars which has served for many years as
the favorite type of American descriptive linguistics as exhibited, for instance, in the
well-known books by Harris (1951) and Hockett (1958).

Bar-Hillel (1964), p. 103

The fact that C and PS Grammar are equivalent only in certain subtypes, namely
bidirectional C Grammar and context-free PS Grammar, was eclipsed by context-
free grammars generating the largest language class which is still computationally
tractable. The fact that bidirectional C Grammar and context-free PS Grammar are
only weakly equivalent was studiously ignored as well.

These oversights gave rise to the erroneous belief that PS Grammar and its formal
language hierarchy are somehow given by nature and that it is the only formal system
of artificial and natural languages. However, the existence of LA Grammar (TCS’92)
shows that there may be elementary grammar formalisms which divide the set of
artificial languages into language classes different from those of PS Grammar.6

The notions of languages, formal grammars, subtypes of grammars, classes of lan-
guages, parsers, and complexity are related as follows:

– Languages
Languages exist independently of formal grammars. This is shown not only by the
natural languages, but also by artificial languages like akbm, akbk, akbkck, akbkckdk,
{akbkck}*, WWR, WW, WWW, etc. Their traditional names characterize the respec-

6 For example, context-free akbk (7.1.3, 10.2.2) and context-sensitive akbkck (8.3.5, 10.2.3)
are classified in LA Grammar as elements of the same linear class of C1 LAGs. Correspond-
ingly, context-free WWR (8.3.5, 11.5.4) and context-sensitive WW (11.5.6) are classified in
LA Grammar as elements of the same polynomial (n2) class of C2 LAGs.
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tive languages sufficiently well as to allow writing down and recognizing their well-
formed expressions.
The definition of an explicit grammar within a given grammar formalism for a nat-
ural or artificial language constitutes a second step which usually is not trivial at
all. That a given language may be described by different formal grammars of dif-
ferent grammar formalisms is shown by the comparison of the C and PS Grammar
analysis of akbk in 7.4.4 and 7.1.3, respectively.

– Formal grammars
On the one hand, a formal grammar is a general framework; on the other, it is a
specific rule system defined for describing a specific language within the general
framework. For example, PS Grammar as a general framework is formally defined
as the quadruple <V,VT ,S,P>, with certain additional conditions on its elements.
Within this general formalism, specific PS Grammars may be defined for generating
specific languages such as akbk (7.1.3).

– Subtypes of formal grammars
Different restrictions on a formal grammar framework may result in different gram-
mar kinds. In this way, the subtypes of regular, context-free, context-sensitive, and
unrestricted PS Grammars are defined in PS Grammar, and the subtypes of C1, C2,
C3, B, and A LAGs are defined in LA Grammar. The various restrictions do not
exist absolutely, but depend on formal properties of the particular grammar frame-
work employed (especially its rule structure).

– Language classes
The subtypes of a formal grammar may be used to divide the set of possible lan-
guages into different language classes. Because the subtypes depend on the formal-
ism used, the associated language classes do not exist absolutely, but instead reflect
the formal properties of the grammar formalism employed. For example, the pair-
wise inverse structure characteristic of context-free languages follows directly from
the specific restrictions on the rule structure of context-free PS Grammars.
Nota bene: languages exist independently of the formal grammars which may ac-
cept them. The language classes, on the other hand, do not exist independently, but
result from particular restrictions on particular grammar formalisms.

– Parsers
Parsers are programs of automatic language analysis which are defined for whole
subtypes of formal grammars (e.g., context-free PS Grammars or the C LAGs).
Thus, the problem with a context-sensitive language like akbkck (8.3.7) is not that
one could not write an efficient analysis program for it, but rather that no practical
parser can be written for the class of context-sensitive PS Grammars in general.

– Complexity
The complexity of a subtype of formal grammar is determined over the number of
primitive operations needed by an equivalent abstract automaton or parsing pro-
gram for analyzing expressions in the worst case. The complexity of individual
languages is usually determined over the complexity of their respective classes. Be-
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cause language classes depend on the particular formalism employed, a language
like akbkck belongs in PS Grammar to the class of context-sensitive languages,
which is of exponential complexity, but in LA Grammar to the class of C1 LAGs,
which is of linear complexity.

Besides studying the complexity of a language in terms of its class, one may also in-
vestigate the inherent complexity of individual languages. In this case one uses the
specific structural properties of the language (independent of any particular gram-
mar formalism) to show how many operations its analysis would require in the worst
case, on an abstract machine (e.g., a Turing or register machine). For example, lan-
guages like 3SAT and Subset Sum (Sect. 11.5) are inherently complex. Therefore,
these languages will necessarily be in a high complexity class (here, exponential) in
any possible grammar formalism.

The inherent complexity of individual languages is an important tool for determin-
ing the minimal complexity of language classes. This form of analysis occurs on a
very low level, however, corresponding to machine or assembler code. For this reason,
the complexity of artificial and natural languages is usually analyzed at the abstrac-
tion level of grammar formalisms, whereby complexity is determined for the grammar
kind and its language class as a whole.

9.3 Type Transparency Between Grammar and Parser

The simplest and most transparent use of a grammar by a parser consists in the parser
merely applying the formal grammar mechanism in the analysis of the input. This
natural view of the parser as a simple motor or driver of the grammar was originally
intended also in PS Grammar.

Miller and Chomsky’s original (1963) suggestion is really that grammars be realized
more or less directly as parsing algorithms. We might take this as a methodologi-
cal principle. In this case we impose the condition that the logical organization of
rules and structures incorporated in the grammar be mirrored rather exactly in the
organization of the parsing mechanism. We will call this type transparency.

Berwick and Weinberg (1984), p. 39

The following definition specifies the notion of absolute type transparency (Berwick
and Weinberg (1984), p. 41, in a precise, intuitively obvious, and general way.

9.3.1 DEFINITION OF ABSOLUTE TYPE TRANSPARENCY

– For any given language, parser and generator use the same formal grammar,
– and the parser/generator applies the rules of the grammar directly.
– This means in particular that the parser/generator applies the rules in the same order

as the grammatical derivation,
– that in each rule application the parser/generator takes the same input expressions

as the grammar, and
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– that in each rule application the parser/generator produces the same output expres-
sions as the grammar.

In PS Grammar, it soon turned out that a direct application of the grammar rules by
a parser is inherently impossible (see below). The historical background for this is that
Post (1936) developed his production or rewrite system to mathematically character-
ize the notion of effective computability in recursion theory.7 In this original applica-
tion, a derivation order based on the substitution of signs by other signs is perfectly
natural.

When Chomsky (1957) borrowed the Post production system under the name of
PS grammar for analyzing natural language, he inherited its substitution-based deriva-
tion order. Because a parser takes terminal strings as input, while a PS Grammar starts
from a start symbol, PS Grammars and their parsers are not input-output equivalent –
which means that a parser able to apply the rules of PS Grammar directly cannot exist.

The structural problem of using context-free PS Grammar for parsing is illustrated
by the following step-by-step derivation of a a a b b b based on the PS Grammar 7.1.3
for akbk:

9.3.2 Top-down DERIVATION OF a a a b b b

In this substitution-based derivation , the variable S on the left-hand side of the rules
is repeatedly replaced by the signs on the right-hand side of the rules. The derivation
begins with the variable S and ends when all variables have been replaced by terminal
signs. This expansion of variables is called a top-down derivation.

7 See for example Church (1956), p. 52, footnote 119.
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A computational procedure cannot apply the derivational mechanism of PS Gram-
mar directly in the analysis of the input a a a b b b, because PS Grammar always
inserts terminal symbols in two different locations into the output string. In contrast
to PS Grammar, the computer program has to deal with the unanalyzed terminal string,
and there the structural relation between two locations of arbitrary distance is not at
all obvious.

The only possibility for using the grammatical top-down derivation directly for the
automatic analysis of input would be a systematic derivation of all outputs (beginning
with the shortest), hoping that the string to be analyzed would at some point show
up in the set of outputs. In the case of akbk this would succeed fairly easily, but for
the whole class of context-free PS Grammars this approach would be no solution. For
example, in the case WWR, the number of possible outputs may grow exponentially
with their length, for which reason the method of generating all possible strings would
quickly become prohibitively inefficient.

Alternatively, one may try to apply PS Grammar in a bottom-up derivation.

9.3.3 Bottom-up DERIVATION OF a a a b b b

A bottom-up derivation begins with the right-hand side of one or more rules and
replaces them with the variable of their left-hand side. These variables are matched
to the right-hand sides of other rules and replaced by their respective left-hand sides.
This type of bottom-up derivation may be stopped whenever only one rule is active
and its right-hand side is replaced by the start symbol S.

The weakness of a bottom-up derivation in context-free PS Grammar is that it re-
quires the program to find the theoretical center of the pairwise inverse structures.



9.3 Type Transparency Between Grammar and Parser 177

This is a problem because the program has to deal with arbitrary unanalyzed input
strings in which the theoretical center is not marked.

In the case of akbk, the program could use the border between the a and b words to
determine the center, but this would be no solution for context-free PS Grammar in
general. The language WWR, for example, contains strings like a a a a a a and a a a
a a a a a, where the center can only be determined via the length. Length, however,
is not a general criterion either, because there are context-free languages like akb3k

(8.3.4) where the center of the derivation is not located at half the length of the input.
In order to show how a parser may overcome the difficulties with the logical deriva-

tion order of context-free PS Grammar in a generally valid manner, let us consider
an analysis within the Earley algorithm, which according to Hopcroft and Ullman
(1979), p. 145, “is the most practical, general, context-free recognition and parsing al-
gorithm.” The main purpose of the following example is to illustrate the restructuring
of PS Grammar rules necessary for the general parsing of context-free languages.

9.3.4 THE EARLEY ALGORITHM ANALYZING akbk

The Earley8 algorithm uses three operations which are not part of the algebraic defi-
nition of PS Grammar (8.1.1), namely the predictor-, scan- and completor-operation
(Earley 1970). With these operations, the input to 9.3.4 is analyzed from left to right,
whereby a dot indicates how far the analysis has proceeded.

At the beginning of the analysis, the dot is placed before the input string

.a a a b b b

which is interpreted as corresponding to the state

.S

As a variable, S cannot have a counterpart in the input string, for which reason the
scan-operation cannot apply.

8 Jay Earley developed his parsing algorithm for context-free PS Grammars in his dissertation
at the Computer Science Department of Carnegie Mellon University in Pittsburgh, USA.
After this achievement he became a clinical psychologist specializing in group therapy and
Internal Family Systems Therapy (IFS).
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However, using the two rules S → a b and S → a S b of the PS Grammar for akbk,
the predictor-operation produces two new states, namely

.a b

.a S b

which are added to the state set of the parsing algorithm.
In the next cycle of the algorithm, the dot is moved one position to the right (com-

pletor-operation), both in the input string, i.e.,

a. a a b b b

and in the states, i.e.,

a. b
a. S b

The scan-operation checks whether the sign before the dot in the states corresponds
to the sign before the dot in the input string. This is successful in both cases.

In the next cycle, the dot is again moved one position to the right, resulting in the
input string

a a. a b b b

and in the states

a b.
a S. b

Because the first state has a terminal symbol preceding the dot, namely b, the scan-
operation is attempted. This is not successful, however, because the terminal preced-
ing the dot in the input string is an a.

The second state, on the other hand, has an S preceding the dot, to which according
to the grammar rules the predictor-operation may be applied. This results in the states

a a. b b
a a. S b b,

both of which are shown by another scan-operation to fit the input string.
Next the completor-operation moves the dot again one position to the right, resulting

in the input string

a a a. b b b

and the states

a a b. b
a a S. b b

Applying the scan-operation to the first state does not succeed.
However, applying the predictor-operation to the second state results in two new

states, namely

a a a. b b b
a a a. S b b b
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which are both matched successfully with the input string by another scan-operation.
Once more the dot is moved one position to the right, producing the input string

a a a b. b b

and the new states

a a a b. b b
a a a S. b b b

This time the scan-operation succeeds on the first state.9

Again the dot is moved one position to the right, resulting in the input string

a a a b b. b

and the state

a a a b b. b

Because the state consists of terminal symbols only, only the scan-operations can
apply. The first of these happens to be successful, resulting in the input string

a a a b b b.

and the state

a a a b b b.

The dot at the end of the input string indicates a successful analysis.
We have seen that the Earley algorithm uses the rules of the grammar, but not di-

rectly. Instead, the parsing algorithm disassembles the rules of the grammar succes-
sively into their basic elements, whereby the order is determined by the sequence of
terminal symbols in the input string – and not by the logical derivation order of the
grammatical rule system. Therefore, the relation between the Earley algorithm and
the context-free PS Grammars used by it is not type-transparent.

For context-free PS Grammar there exists a considerable number of parsers be-
sides the Earley algorithm, such as the CYK algorithm (Hopcroft and Ullman 1979,
pp. 139–141) and the chart parser (Kay 1980). On the positive side, these parsers all
interpret arbitrary context-free PS Grammars and analyze any of the associated lan-
guages. On the negative side, these parsers all lack type transparency.

Parsers like the Earley algorithm, the CYK algorithm, or the chart parser cannot ap-
ply the rules of context-free PS Grammar directly. Instead, they require huge interme-
diate structures, called state sets, tables, or charts, in order to correlate the differing
derivation orders of the grammar and the parser. As an excuse, it has been pointed out

9 The second state is also still active at this point because it allows a further predictor-
operation, resulting in the new states

a a a a. b b b b
a a a a. S b b b b

The subsequent scan-operations on the input

a a a b. b b

do not succeed, however.
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that the user, for example the grammar writer, does not notice the procedural routines
of the parser. This is only valid, however, if the PS Grammar is already descriptively
adequate.

However, if the parser is used in the development of descriptively adequate gram-
mars, the lack of type transparency greatly impedes debugging and upscaling of the
grammar. For example, if an error occurs because the parser cannot find a legal gram-
matical structure for well-formed input, then this error must be found in the complex
rule system of the PS Grammar.

The number of rules in context-free PS Grammars used for practical applications
often exceeds several thousand. Here, it would be of great help if errors could be lo-
calized with the help of parse traces. However, because the parser cannot use the rules
of the PS Grammar directly, the parse trace (protocol of states) is about as unreadable
as assembler code and therefore of little heuristic value.

One may, of course, write secondary parsers in order to translate the unreadable in-
termediate structures of the primary parser into a form that can be used by humans for
localizing errors. Compared to a type-transparent system like LA Grammar, however,
both the construction of the intermediate structures and their reinterpretation for hu-
man analysis constitute an essentially superfluous effort, the costs of which show up
not only in the programming work required, but also in additional computation and
increased use of memory.

9.4 Input-Output Equivalence with the Speaker-Hearer

The nativist approach has attempted to belittle the structural disadvantages of
PS grammar as a problem of programming, the solution of which was the job of
computer science. They claimed that the real goal was an analysis of the innate lan-
guage knowledge of the speaker-hearer, and for this the computational unsuitability
of PS Grammar was of no concern.

This line of reasoning is not valid, however. Because the form of innate structures
follows their function (4.5.3), a minimal requirement for the description of the in-
nate human language capability is that the grammar formalism used be input-output
equivalent with the speaker-hearer.

PS Grammar, however, is just as incompatible with the input-output conditions of
the speaker-hearer as it is with those of its parsers, as shown by the following PS
Grammar for the English sentence Julia read a book.:

9.4.1 CONTEXT-FREE PS GRAMMAR FOR A SIMPLE SENTENCE OF ENGLISH

1. S → NP VP 5. V → read
2. NP → DET N 6. DET → a
3. VP → V NP 7. N → book
4. NP → Julia
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In the derivation of the associated analysis tree, rule 1 replaces (substitutes) the start
symbol S with NP (noun phrase) and VP (verb phrase). Then, rule 4 replaces the node
NP with the word Julia, and rule 3 replaces the node VP with the nodes V and NP.
Next, rule 5 replaces the node V (verb) with the word read, and rule 2 replaces the
node NP with the nodes DET (determiner) and N (noun). Finally, rule 6 replaces the
node DET with the word a, and rule 7 replaces the node N with the word book:

9.4.2 PS GRAMMAR ANALYSIS (top-down DERIVATION)

As simple and natural as this derivation may seem from a logical point of view, it
is nevertheless in clear contradiction to the time-linear structure of natural language.
The discrepancy between the input-output conditions of PS Grammars and the use of
language by the hearer/reader is illustrated by the following sketch which attempts a
time-linear analysis based on the PS Grammar 9.4.1:

9.4.3 ATTEMPT AT A TIME-LINEAR ANALYSIS IN PS GRAMMAR
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The natural order of reading the sentence Julia read a book is time-linear, i.e., from
left to right,10 one word after the other. After replacing the first two words, Julia and
read, by the nodes NP and V (in accordance with rules 4 and 5), the reader’s grammar
algorithm is looking for a PS rule to replace the node sequence NP V by a higher
node. However, since no such rule is provided by the grammar, the subtree consisting
of the first word and its category must be set aside for later use.

Next, the reader’s grammar algorithm replaces the third word a by its category DET
using rule 6, and attempts to combine the category V of the second word with the
category DET of the third word by replacing them by a higher node. Again, no suitable
rule is provided by the grammar, and the subtree of the second word must also be set
aside for later use.

Finally, the reader’s grammar algorithm attempts to combine the category of the
third word with that of the fourth and final word of the input sentence. Here, at last,
the grammar provides a suitable rule, namely rule 2, to combine the node sequence
DET N into the higher node NP.

At this point, the reader’s grammar algorithm attempts once more to combine the
category V of the second word read, which has been set aside for later use, this time
with the newly derived NP node. It turns out that this is possible, thanks to rule 3,
resulting in the higher node VP. Finally the reader’s grammar algorithm attempts once
more to combine the category NP of the first word Julia, which has been set aside
since the analysis of this four-word sentence first began, this time with the newly
derived VP node. This time the attempt is successful due to rule 1, and the analysis is
complete.

The analysis sketch 9.4.3 shows that a time-linear interpretation is impossible in a
constituent-structure-based context-free PS grammar: the first word of the sentence
was the last to be built into the analysis. PS Grammar’s lack of type transparency is
thus not only an obstacle to the development of systems for the automatic analysis of
artificial or natural languages. It is also in conflict with the elementary principle of
nature that form – especially innate form – follows function.

But what about the standard nativist reply that their grammars are not intended11

to describe the operations of the speaker-hearer in communication, and that they are
intended instead to describe the innate knowledge of the speaker-hearer at a level of
abstraction (competence) which is independent of the use of language in concrete
communication? This reply cannot convince, because in order for a nativist grammar
to be plausible, its basic structures have to be at least compatible with the communica-
tion mechanism of natural language. We have shown, however, that this is impossible
in a nativist theory using the formalism of PS Grammar.

10 According to the writing conventions of the Greco-Roman tradition.
11 Chomsky has emphasized tirelessly that it was not the goal of his nativist program to model

the communication procedure of the speaker-hearer. See for example Chomsky (1965), p. 9.
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9.5 Desiderata of Grammar for Achieving Convergence

From the perspective of the history of science, PS Grammar-based nativism may be
evaluated in different ways. By means of continuous revision, nativism has achieved
over forty years of holding public and scholarly interest, preserving influence, recruit-
ing new followers, and turning internal strife into a source of restoration rather than
decline. On the negative side, it is a textbook example of a lack of convergence.12

The lack of convergence shows up in at least four ways. First, instead of con-
solidation there has been a development of ever new derived systems, epitomized
by McCawley’s (1982) title Thirty Million Theories of Grammar.13 Second, each
time an additional mechanism (e.g., transformations, metarules, etc.), regarded as de-
scriptively necessary, was introduced, the mathematical and computational properties
were severely degraded compared to the elementary subformalism of context-free PS
Grammar. Third, the description of natural language within PS Grammar has led con-
tinuously to problems of the type descriptive aporia and embarrassment of riches 14

(Sect. 22.2). Fourth, practical systems of natural language processing either pay only
lip service to the theoretical constructs of nativism or ignore them altogether.

There are two main reasons for this lack of convergence. First, nativism is empir-
ically underspecified because it does not include a functional theory of communica-
tion. Second, the PS Grammar formalism adopted by nativism is incompatible with
the input-output conditions of the speaker-hearer.

12 In the history of science, a field of research is regarded as developing positively if its dif-
ferent areas converge, i.e., if improvements in one area lead to improvements in others.
Conversely, a field of science is regarded as developing negatively if improvements in one
area lead to a deterioration in other areas.

13 This number is computed on the basis of the open alternatives within the nativist theory
of language. McCawley’s calculation amounts to an average of 2 055 different grammar
theories a day, or a new theory every 42 seconds for the duration of 40 years.

14 PS Grammar in combination with constituent structure analysis exhibits descriptive aporia
in, for example, declarative main clauses of German such as Peter hat die Tür geschlossen.
Because of its discontinuous elements, this sentence cannot be provided with a legal con-
stituent structure analysis within context-free PS Grammar (8.5.1 and 8.5.2).

To resolve this and other problems, transformations were added to context-free PS Gram-
mar (8.5.3). This resulted in many problems of the type embarrassment of riches. For ex-
ample, there arose the question of whether the main clauses of German should be derived
transformationally from the deep structure of subordinate clauses (e.g., weil Peter die Tür
geschlossen hat) or vice versa.

The transformational derivation of main clauses from subordinate clauses, championed
by Bach (1962), was motivated by the compliance of subordinate clauses with constituent
structure, while the transformational derivation of subordinate clauses from main clauses,
advocated by Bierwisch (1963), was motivated by the feeling that main clauses are more
basic. For a treatment of German main and subordinate clauses without transformations see
Chap. 18, especially Sect. 18.5.
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Given the long-term consequences of working with a certain formalism,15 begin-
ning linguists interested in (i) modeling the mechanism of natural communication,
(ii) verifying their model computationally, and (iii) utilizing their model in practi-
cal applications such as human-machine communication, should select their grammar
formalism carefully and consciously. As a contribution to a well-educated choice, the
properties of PS Grammar are summarized below.

9.5.1 PROPERTIES OF PS GRAMMAR

– Mathematical:
Practical parsing algorithms exist only for context-free PS Grammar, which is of a
sufficiently low complexity (n3), but not of sufficient generative capacity for natural
language. Extensions of the generative capacity for the purpose of describing natu-
ral language turned out to be of such high complexity (undecidable or exponential)
that no practical parsing algorithm could exist for them.

– Computational:
PS Grammar is not type-transparent. This prevents using the automatic traces of
parsers for purposes of debugging and upscaling grammars. Furthermore, the in-
direct relation between the grammar and the parsing algorithm requires the use of
costly routines and large intermediate structures.

– Empirical:
The substitution-based derivation order of PS Grammar is incompatible with the
time-linear structure of natural language.

Because bidirectional C Grammar and context-free PS Grammar are weakly equiv-
alent (Sect. 9.2), C Grammar cannot serve as an alternative. We must therefore look
for yet another elementary formalism with the following properties:

9.5.2 DESIDERATA OF A FORMAL GRAMMAR FORMALISM

1. The grammar formalism should be mathematically well-defined and thus
2. permit an explicit, declarative description of artificial and natural languages.
3. The formalism should be recursive (and thus decidable) as well as

15 Changing from one formalism to another may be costly. It means giving up the hard-earned
status of expert in a certain area, implies revising or discarding decades of previous work,
and may have major social repercussions in one’s peer group, both at home and abroad.

However, fields of science are known to sometimes shift in unexpected ways such that
established research groups suddenly find their funds, their influence, and their member-
ship drastically reduced. When this happens, changing from one formalism to another may
become a necessity of survival.

In light of these possibilities, the best long-term strategy is to evaluate scientific options,
such as the choice of grammar formalism, rationally. As in all good science, linguistic
research should be conducted with conviction, based on the broadest and deepest possible
knowledge of the field.
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4. type-transparent with respect to its parsers and generators.
5. The formalism should define a hierarchy of different language classes in terms of

structurally obvious restrictions on its rule system (analogous – but orthogonal –
to the PS Grammar hierarchy),

6. whereby the hierarchy contains a language class of low, preferably linear, com-
plexity, the generative capacity of which is sufficient for a complete description
of natural language.

7. The formalism should be input-output equivalent with the speaker-hearer (and
thus should use a time-linear derivation order).

8. The formalism should be suited equally well for production (in the sense of map-
ping meanings to surfaces) and interpretation (in the sense of mapping surfaces
to meanings).

The following chapters will show that LA Grammar satisfies these desiderata. In con-
tradistinction to the formalisms of C Grammar and PS Grammar, the derivations of
which are based on the principle of possible substitutions, the derivations of LA Gram-
mar are based on the principle of possible continuations.

Exercises

Section 9.1
1. What is the origin of the term parser and what are the functions of a parser?
2. What is the relation between morphology, syntax, and semantic parsers, and how

do they differ?
3. Describe two different ways of using a formal grammar in a parser and evaluate

the alternatives.
4. Explain the notions declarative and procedural. How do they show up in parsers?
5. Is it possible to write different parsers for the same grammatical formalism?

Section 9.2
1. Describe a context-free structure in natural language.
2. Are there context-sensitive structures in natural language?
3. What follows from the assumption that natural language is not context-free?

Does the answer depend on the grammar formalism used? Would it be possi-
ble to parse natural language in linear time even if it were context-sensitive?

4. Explain the possible equivalence relations between two formalisms of grammar.
5. How is bidirectional C Grammar related to the kinds of PS Grammar?



186 9. Basic Notions of Parsing

6. Do artificial languages depend on their formal grammars?
7. Do language classes depend on formalisms of grammar?
8. What impact has the complexity of a language class on the possible existence of

a practical parser for it?
9. What is the inherent complexity of a language and how is it determined?

Section 9.3

1. Explain the notion of type transparency.
2. For what purpose did Post (1936) develop his production systems?
3. When are a grammar formalism and a parser input-output equivalent?
4. What is the difference between a top-down and a bottom-up derivation in a

context-free PS Grammar?
5. Why is it that a context-free PS Grammar is not input-output equivalent with its

parsers? Base your explanation on a top-down and a bottom-up derivation.
6. Explain the functioning of the Earley algorithm using an expression of akbk. How

does the Earley algorithm manage to get around the substitution-based derivation
order of PS Grammar?

7. Explain how the Earley algorithm makes crucial use of the pairwise inverse struc-
ture of context-free PS Grammars.

8. Is it possible to parse akbkck using the Earley algorithm?
9. Are there type-transparent parsers for context-free PS Grammar?

10. Name two practical disadvantages of an automatic language analysis which is
not type-transparent.

Section 9.4

1. Explain why a nativist theory of language based on PS Grammar is incompat-
ible with the principle form follows function, using the notion of input-output
equivalence.

2. Demonstrate with an example that the derivation order of PS Grammar is incom-
patible with the time-linear structure of natural language.

3. Does an additional transformational component (Sects. 2.4 and 8.5) diminish or
increase the incompatibility between the PS Grammar derivation order and the
time-linear order of natural language?

Section 9.5

1. Explain the notion of convergence, as used in the history of science.
2. How does a lack of convergence show up in the historical development of na-

tivism, and what are its reasons?
3. How did McCawley calculate the number in his title Thirty Million Theories of

Grammar? Does this number indicate a positive development in linguistics?
4. Why can changing to another grammar formalism be costly?
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5. Do you see a relation between ‘descriptive aporia’ and ‘embarrassment of riches,’
on the one hand, and the proposal of ever new derived formalisms with high
mathematical complexity, on the other?

6. Describe the mathematical, computational, and empirical properties of PS Gram-
mar.

7. Which desiderata must be satisfied by a formal grammar in order for it to be
suitable for a computational analysis of natural language?



10. Left-Associative Grammar (LAG)

Chapters 7–9 have developed the basic notions for analyzing artificial and natural
languages within the historical formalisms of C Grammar (Leśniewski 1929; Aj-
dukiewicz 1935) and PS Grammar (Post 1936; Chomsky 1957). Chapters 10–12 will
apply these notions to the third elementary formalism, namely LA Grammar (Hausser
1985 et seq.).1 Unlike the other two formalisms, LA Grammar was not borrowed
from some other field of research to be adapted to natural language analysis, but was
developed from the outset as a time-linear, type-transparent algorithm that is input-
output-equivalent with the speaker-hearer.

Section 10.1 explains how the time-linear structure of natural language is modeled
by the left-associative derivation order, defines the principle of possible continuations,
and shows for C, PS, and LA Grammar the general connection between rule for-
mat and conceptual derivation order. Section 10.2 provides an algebraic definition of
LA Grammar. Section 10.3 describes formats for representing time-linear derivations.
Section 10.4 illustrates the relation between automatic analysis and automatic gener-
ation in LA Grammar using the context-sensitive language akbkck, and demonstrates
the type transparency of LA Grammar. Section 10.5 shows how LA-grammatical anal-
yses of natural language are motivated linguistically.

10.1 Rule Kinds and Derivation Order

The name LA Grammar is motivated by the left-associative derivation order on which
it is based. The notion left-associative is known from logic.

When we combine operators to form expressions, the order in which the operators
are to be applied may not be obvious. For example, a + b + c can be interpreted as
((a + b) + c) or as (a + (b + c)). We say that + is left-associative if operands are
grouped left to right as in ((a + b) + c). We say it is right-associative if it groups
operands in the opposite direction, as in (a + (b + c)).

Aho and Ullman (1977), p. 47

1 The ‘official’, peer-reviewed publication is Hausser (1992) in the journal Theoretical Com-
puter Science (TCS).

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_10, © Springer-Verlag Berlin Heidelberg 2014
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Left- and right-associative bracket structures have the special property that they may
be interpreted as regularly increasing.

10.1.1 INCREMENTAL LEFT- AND RIGHT-ASSOCIATIVE DERIVATION

left-associative: right-associative:

a a
(a + b) (b + a)

((a + b) + c) (c + (b + a))
(((a + b) + c) + d) (d + (c + (b + a)))

... ...�⇒ ⇐�
Of these two regularly increasing structures, the left-associative one corresponds to
the traditional direction of Western (Greco-Roman) writing. It serves as the formal-
ization of time-linearity in LA Grammar.

More specifically, an LA Grammar takes the first word a in an abstract word se-
quence a b c d e as the sentence start and the second word b as the next word, and
combines them into a new sentence start (a+b). This result is combined with the next
word c into the new sentence start ((a + b) + c), etc. In this way, a sentence start is
always combined with a next word into a new sentence start until no new next word
is available in the input.

The left-associative derivation order is linear in the sense that it regularly adds one
word after the next, and it is time-linear because the direction of growth corresponds
to the direction of time 5.4.3. The left-associative derivation order captures the basic
structure of natural language in accordance with de Saussure’s second law (5.4.4).

Besides the regular left- and the right-associative bracketing structure there is a
multitude of irregular structures, e.g.,

(((a + b) + (c +d)) + e)
((a + b) + ((c +d)) + e)
(a + ((b + c)) + (d + e))
((a + (b + c)) + (d + e))
(((a + b) + c) + (d +e))

...

The number of these irregular bracketings grows exponentially with the length of the
string and is infinite if bracketings like (a), ((a)), (((a))), etc., are permitted.

It is these irregular bracketing structures (and corresponding trees) which C and PS
Grammar generate via the principle of possible substitutions. From the large number
of possible trees for a terminal chain, there follows the central task of linguistic de-
scription in C and PS Grammar, namely to motivate the ‘correct’ bracketing structure
and the ‘correct’ phrase structure tree as a constituent structure analysis.

LA Grammar, on the other hand, is based on the principle of possible continuations,
which is formally reflected in the regular left-associative bracketing structure (10.1.1)
and corresponding trees (10.1.6).
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10.1.2 THE PRINCIPLE OF POSSIBLE CONTINUATIONS

Beginning with the first word of the sentence, the grammar describes the pos-
sible continuations for each sentence start by specifying the rules which may
perform the next grammatical composition (i.e., add the next word).

The time-linear derivation order and the structural characterization of possible con-
tinuations is formalized in the specific rule schema of LA Grammar.

10.1.3 SCHEMA OF LEFT-ASSOCIATIVE RULES IN LA GRAMMAR

ri : cat1cat2 ⇒ cat3rpi

The rule consists of the name ri , the category patterns cat1, cat2, and cat3, and the
rule package rpi . The category patterns define a categorial operation which maps a
sentence start ss (matched by cat1) and a next word nw (matched by cat2) into a new
sentence start ss ′ (characterized by cat3). The output of a successful application of
rule ri is a state defined as an ordered pair (ss ′ rpi).

In the next combination, the rules of the rule package rpi are applied to ss ′ and a
new next word. Because an LA-grammatical analysis starts with the initial words of
the input, its conceptual derivation order is bottom-up left-associative.

To facilitate comparison, the schemata of C and PS Grammar are restated below.

10.1.4 SCHEMA OF A CANCELING RULE IN C GRAMMAR

α(Y|X) ◦ β(Y) ⇒ αβ(X)

This rule schema combines α and β into αβ by canceling the Y in the category of
α with the corresponding category of β . The result is a tree structure in which αβ

of category (X) dominates α and β . The conceptual derivation order of categorial
canceling rules is bottom-up amalgamating.

10.1.5 SCHEMA OF A REWRITE RULE IN PS GRAMMAR

X → Y Z

Replacing the sign X by Y and Z corresponds to a tree structure in which Y and Z are
immediately dominated by X. The conceptual derivation order is top-down expanding.

The characteristic derivation orders following from the different rule schemata have
the following schematic representation:
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10.1.6 THREE CONCEPTUAL DERIVATION ORDERS

C and PS Grammar, being based alike on the principle of possible substitutions, differ
only in the direction of their conceptual2 derivation order. In C Grammar, two cate-
gorized expressions are substituted by one categorized expression (bottom-up). In PS
Grammar, one sign is substituted by one, two, or more signs (top-down).

The principle of possible substitutions results in an irregular derivation structure
which is reflected in irregular phrase structure trees. From the viewpoint of the SLIM

theory of language, a substitution-based derivation order is in conflict with the com-
municative function of language (no input-output equivalence between the grammar
and the speaker-hearer, 9.4.3) and an obstacle to automatic language analysis (no type
transparency between the grammar and the parser, 9.3.4).

The principle of possible continuations, in contrast, results in a regular derivation
order. The associated tree structure of LA Grammar may seem linguistically uninter-
esting from the viewpoint of constituent-structure-based C and PS Grammar. From
the viewpoint of the SLIM theory of language, however, it (i) models the fundamental
time-linear structure of natural language, (ii) allows input-output equivalence between
the grammar and the speaker-hearer, and (iii) results in type transparency between the
grammar and the parser.

It follows that the formal notion of constituent structure, defined in terms of phrase
structure trees (8.4.3), has no place in LA Grammar. In the intuitive discussion of
natural language examples, however, this notion may be used informally in the more
general sense of a complex grammatical unit. In this sense, it is an old concept of
classical grammar known as a syntagma. For example, when we say that in the English
declarative sentence

The little dog surprised Mary.

the verb surprised is in ‘second position,’ then we do not mean the position of the
second word form in the sentence, but rather the position after the first grammatical

2 In C Grammar and PS Grammar, the conceptual derivation order is distinct from the pro-
cedural derivation order. For example, the different parsers for context-free PS Grammar
use many different derivation orders, some working from left to right, some from right to
left, some beginning in the middle (island parsers), some using a left-corner order, others a
right-corner order, etc. These alternative orders are intended to improve efficiency by uti-
lizing special properties of the language to be analyzed, and belong to the procedural aspect
of the respective systems.
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unit, syntagma, or constituent in a nontechnical sense. The complexity of grammatical
units may be elementary, e.g., Fido, phrasal, e.g., The little dog, or clausal , e.g., That
Fido barked.

10.2 Formalism of LA Grammar

In the following algebraic definition of LA Grammar, we identify positive integers
with sets, i.e., n = {i | 0 ≤ i < n}, for convenience.3

10.2.1 ALGEBRAIC DEFINITION OF LA GRAMMAR

A left-associative grammar (or LA Grammar) is defined as a 7-tuple <W,C,LX,CO,

RP,STS,STF >, where

1. W is a finite set of word surfaces.
2. C is a finite set of category segments.
3. LX ⊂ (W × C+) is a finite set comprising the lexicon.
4. CO = (co0 . . . con−1) is a finite sequence of total recursive functions from

(C∗ × C+) into C∗ ∪ {⊥},4 called categorial operations.
5. RP = (rp0 . . . rpn−1) is an equally long sequence of subsets of n, called rule pack-

ages.
6. STS = {(catsrps), . . .} is a finite set of initial states, whereby each rps is a subset

of n called start rule package and each cats ∈ C+.
7. STF = {(catf rpf ), . . .} is a finite set of final states, whereby each catf ∈ C∗ and

each rpf ∈ RP.

A concrete LA Grammar is specified by

(i) a lexicon LX (3),
(ii) a set of initial states STS (6),

(iii) a sequence of rules ri , each defined as an ordered pair (coi , rpi), and
(iv) a set of final states STF (7).

A left-associative rule ri takes a sentence start ss and a next word nw as input and tries
to apply the categorial operation coi . If the categories of the input match the patterns
of cat1 and cat2, the application of rule ri is successful and an output is produced. The
output is the state (ss ′ rpi), whereby ss ′ is a resulting sentence start and rpi is a rule
package. If the input does not match the patterns of cat1 and cat2, then the application
of rule ri is not successful, and no output is produced.

3 The algebraic definition of LA Grammar benefited greatly from help by Dana Scott.
4 For theoretical reasons, the categorial operations are defined as total functions. In practice,

the categorial operations are defined as easily recognizable subsets of (C∗ × C+), where
anything outside these subsets is mapped into the arbitrary “don’t care” value {⊥}, making
the categorial operations total functions.
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The rule package rpi contains all rules which can be applied after rule ri was suc-
cessful. A rule package is defined as a set of rule names, whereby the name of a rule
is the place number g of its categorial operation cog in the sequence CO. In practice,
the rules are called by more mnemonic names, such as ‘Det+N’ or ‘Fverb+main.’

After a successful rule application, the algorithm gets a new next word (if present)
from the input and applies the rules of the current rule package to the (once new)
sentence start and the next word. In this way LA Grammar works from left to right
through the input, pursuing alternative continuations in parallel. The derivation stops
if there is either no grammatical continuation at a certain point (ungrammatical input,
e.g., 10.5.5) or if there is no further next word (complete analysis, e.g., 10.5.3).

The general format of LA Grammars is illustrated below with the context-free lan-
guage akbk, previously described within the frameworks of C Grammar (7.4.4) and
PS Grammar (7.1.3).

10.2.2 LA GRAMMAR FOR akbk

LX =def {[a (a)], [b (b)]}
STS =def {[(a) {r1, r2}]}
r1: (X) (a) ⇒ (aX) {r1, r2}
r2: (aX) (b) ⇒ (X) {r2}
STF =def {[ε rp2]}.

The lexicon LX contains two words, a and b. Each word, e.g. [a (a)], is an ordered
pair, consisting of a surface, e.g. a, and a category, e.g. (a). The categories, defined
as lists of category segments, contain here only a single segment,5 which happens to
equal the respective surface.

The initial state STS specifies that the first word must be of category (a), i.e., it must
be an a. Furthermore, the rules to be applied initially must be r1 and r2. Thus, all
rules,6 but not all words, may be used at the beginning of a sentence.

The categorial patterns are based on the sequence variable X, representing zero or
more category segments, and the segment constants a and b. Rule r1 accepts a sentence
start of any category (represented by the pattern (X)), and a next word of category (a),
i.e., an a. The result of the categorial operation is expressed by the pattern (a X): an
a-segment is added at the beginning of the sentence start category.

Rule r2 accepts a sentence start the category of which begins with an a-segment
(represented by the pattern (aX)) and a next word of category (b), i.e., a word b. The
result of the categorial operation is expressed by the pattern (X). This means that an
a-segment is subtracted from the beginning of the sentence start category.

5 In LA Grammars for more demanding languages, the lexical categories consist of several
segments.

6 In more demanding languages, the initial state specifies a proper subset of the grammar
rules.
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The rule package of r1, called rp1, contains r1 and r2. As long as the next word is an
a, r1 is successful, while r2 fails because it requires a b as the next word. As soon as
the first b is reached in the input, r2 is successful, while r1 fails because it requires an
a as the next word. The rule package rp2 contains only one rule, namely r2. Therefore,
once the first b has been added, only b is acceptable as a next word.

An analysis is complete when all the a-segments in the sentence start category have
been canceled by b-segments. In other words, the analysis ends after an application
of r2 with an empty sentence start category. This is specified by the final state STF of
10.2.2, which requires ε (i.e., the empty sequence) as the final result category.

The following LA Grammar generates the context-sensitive language akbkck:

10.2.3 LA GRAMMAR FOR akbkck

LX =def {[a (a)], [b (b)], [c (c)]}
STS =def {[(a) {r1, r2}]}
r1: (X) (a) ⇒ (aX) {r1, r2}
r2: (aX) (b) ⇒ (Xb) {r2, r3}
r3: (bX) (c) ⇒ (X) {r3}
STF =def {[ε rp3]}.

Compared to the corresponding PS Grammar 8.3.7, this LA Grammar is surprisingly
simple. Furthermore, the LA Grammars for context-free akbk and for context-sensitive
akbkck resemble each other closely.

In LA Grammar, the relation between the rules and their rule packages defines a
finite state transition network (FSN). For example, the FSN underlying the LA Gram-
mar for akbkck has the following form:7

10.2.4 THE FINITE STATE BACKBONE OF THE LA GRAMMAR FOR akbkck

This FSN consists of four states, represented as the circles i–iv. Each state is defined as
an ordered pair consisting of a category pattern and a rule package. State i corresponds
to the start state STS , while the states ii, iii, and iv correspond to the output of rules r1,
r2, and r3. State iv has a second circle, indicating that it is a possible final state STF .

The application of a left-associative rule to an input pair, consisting of a sentence
start and a next word, results in a transition. The transitions are represented graphically
as arrows, annotated with the name of the associated rule. The transitions leading into
a state represent the categorial operation of the rule associated with this state. The

7 For a more detailed description see CoL, Sect. 8.2.
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transitions leading out of a state represent the rule package of the rule common to all
the transitions leading into the state.

For example, the transitions leading out of state i are different (namely r1 and r2),
corresponding to the rule package of the start state in STS . The transitions leading into
state ii are all the same, representing applications of r1 from different preceding states.
Correspondingly, the transitions leading out of state ii are different, corresponding to
the rule package of r1. The transitions leading into state iii are all the same, represent-
ing applications of r2 from three different preceding states, etc.

An LA Grammar analyzing an input or generating an output navigates through its
FSN, from one state to the next, following the transition arrows. Thereby, the gener-
ative capacity of LA Grammar resides in the categorial operations of its rules. While
the FSN algorithm by itself generates only the regular languages, the algorithm of LA
Grammar generates exactly the class of recursive languages (Sect. 11.1).

This enormous generative capacity may be used efficiently, however. For example,
the LA Grammars for akbk and akbkck are of the lowest possible complexity: they both
parse in linear time.8 Thus, there is no complexity theoretical boundary between the
context-free and the context-sensitive languages in LA Grammar. This is a first indi-
cation that the formalism of LA Grammar arrives at a hierarchy of language classes
different from the formalism of PS Grammar.

10.3 Time-Linear Analysis

The tree structures of LA Grammar may be displayed equivalently as structured lists.

10.3.1 LA TREES AS STRUCTURED LISTS

In (i), a left-associative derivation is shown in the form of a tree (10.1.6). In (ii), the
same derivation is shown in the equivalent format of a structured list, whereby sen-
tence start, next word, and resulting sentence start each have their own line. Formats
(ii) and (iii) differ only in the direction of a time-linear reading: in (ii) it begins at the
bottom – in analogy to the tree structure (i) – and in (iii) at the top.

8 The two LA Grammars are unambiguous because their respective rules have incompatible
input conditions (they each take different next words). Unambiguous LA Grammars of this
kind are called C1 LAGs and parse in linear time (Chap. 11).
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Structure (iii) is best suited for displaying derivations on the screen. This format is
shown below, based on the LA Grammar 10.2.2, analyzing the expression aaabbb.

10.3.2 LA GRAMMAR DERIVATION OF akbk FOR k = 3

NEWCAT> a a a b b b

*START-0
1

(A) A
(A) A

*RULE-1
2

(A A) A A
(A) A

*RULE-1
3

(A A A) A A A
(B) B

*RULE-2
4

(A A) A A A B
(B) B

*RULE-2
5

(A) A A A B B
(B) B

*RULE-2
6

(NIL) A A A B B B

This automatic analysis was generated directly as the formatted protocol (trace) of the
LA Parser NEWCAT. Because of the absolute type transparency of LA Grammar, the
declarative analysis and the derivation procedure on the computer are merely different
realizations of the same left-associative algorithm. The input to be analyzed is typed
in after the prompt NEWCAT>. To obtain a better comparison of the input categories,
surface and category are printed in inverse order, e.g., (A) A instead of [A (A)].

The first section in begins with the name of the active rule package *START-0. Then
follows the composition number 1, the sentence start (consisting of the first word), the
next (i.e., second) word, and finally the name of the rule (RULE-1) which combines
the sentence start and the next word. After the next composition number follows the
result of the (still) current composition:

active rule package: *START-0
composition number: 1
sentence start: (A) A
next word: (A) A
successful rule: *RULE-1
next composition number: 2
result: (A A) A A
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The rule name (‘successful rule’) and the resulting sentence start (‘result’) each
have a double function. The rule name simultaneously specifies (i) the rule which is
successful in composition n and (ii) the rule package, the rules of which are applied
in the next composition n + 1. Correspondingly, the result simultaneously represents
(i) the output of composition n and (ii) the sentence start of composition n + 1.

These double functions in a left-associative derivation are clearly visible in the sec-
ond composition:

active rule package: *RULE-1
composition number: 2
sentence start : (A A) A A
next word: (A) A
successful rule : *RULE-1
next composition number: 3
result: (A A A) A A A

The form of the derivation is designed to characterize the categorial operations of the
rules. Because it only represents successful continuations, it constitutes a depth-first
format in LA Grammar. In addition, there is also a breadth-first format, which is used
in, for example, the morphological analysis of word forms (14.4.2, 14.4.3, and 14.4.4).
These output formats have in common that they are simultaneously (i) protocols of the
parser and (ii) analyses of the grammar.

10.4 Absolute Type Transparency of LA Grammar

The algorithm of LA Grammar is equally suited for parsing and generation. The struc-
tural reason for this is the principle of possible continuations. In parsing, the next word
is provided by the input, while in generation the next word is chosen from the lexicon.

The close relation between parsing and generation is illustrated with the follow-
ing traces. They are based on the same LA Grammar 10.2.3 for the context-sensitive
language akbkck.

For parsing, an arbitrary LA Grammar of the C LAG class is loaded. Then, arbitrary
expressions may be put in to be analyzed. The NEWCAT parser includes an automatic
rule counter which at the beginning of each derivation shows the rules attempted in
each left-associative composition.

10.4.1 PARSING aaabbbccc WITH ACTIVE RULE COUNTER

NEWCAT> a a a b b b c c c
; 1: Applying rules (RULE-1 RULE-2)
; 2: Applying rules (RULE-1 RULE-2)
; 3: Applying rules (RULE-1 RULE-2)
; 4: Applying rules (RULE-2 RULE-3)
; 5: Applying rules (RULE-2 RULE-3)
; 6: Applying rules (RULE-2 RULE-3)
; 7: Applying rules (RULE-3)
; 8: Applying rules (RULE-3)
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; Number of rule applications: 14.

*START-0
1

(A) A
(A) A

*RULE-1
2

(A A) A A
(A) A

*RULE-1
3

(A A A) A A A
(B) B

*RULE-2
4

(A A B) A A A B
(B) B

*RULE-2
5

(A B B) A A A B B
(B) B

*RULE-2
6

(B B B) A A A B B B
(C) C

*RULE-3
7

(B B) A A A B B B C
(C) C

*RULE-3
8

(B) A A A B B B C C
(C) C

*RULE-3
9

(NIL) A A A B B B C C C

The number of rule applications attempted here is below 2n.
An LA Generator likewise loads an arbitrary LA Grammar of the class of C LAGs.

Then the function ‘gram-gen’ is called with two arguments: the recursion factor9 of
the grammar and a list of words to be used in the generation. In this way, the generation
procedure is limited to a certain set of words and a certain length. The grammatical
analysis of generation is also a direct trace, this time of the LA Generator.

10.4.2 GENERATING A REPRESENTATIVE SAMPLE IN akbkck

NEWCAT> (gram-gen 3 ’(a b c))

9 CoL, pp. 193f. In another version, ‘gram-gen’ is called up with the maximal surface length
instead of the recursion factor.
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Parses of length 2:
A B

2 (B)
A A

1 (A A)

Parses of length 3:
A B C

2 3 (NIL)
A A B

1 2 (A B)
A A A

1 1 (A A A)

Parses of length 4:
A A B B

1 2 2 (B B)
A A A B

1 1 2 (A A B)
A A A A

1 1 1 (A A A A)

Parses of length 5:
A A B B C

1 2 2 3 (B)
A A A B B

1 1 2 2 (A B B)
A A A A B

1 1 1 2 (A A A B)

Parses of length 6:
A A B B C C

1 2 2 3 3 (NIL)
A A A B B B

1 1 2 2 2 (B B B)
A A A A B B

1 1 1 2 2 (A A B B)

Parses of length 7:
A A A B B B C

1 1 2 2 2 3 (B B)
A A A A B B B

1 1 1 2 2 2 (A B B B)

Parses of length 8:
A A A B B B C C

1 1 2 2 2 3 3 (C)
A A A A B B B B

1 1 1 2 2 2 2 (B B B B)

Parses of length 9:
A A A B B B C C C

1 1 2 2 2 3 3 3 (NIL)
A A A A B B B B C

1 1 1 2 2 2 2 3 (B B B)
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Parses of length 10:
A A A A B B B B C C

1 1 1 2 2 2 2 3 3 (B B)

Parses of length 11:
A A A A B B B B C C C

1 1 1 2 2 2 2 3 3 3 (B)

Parses of length 12:
A A A A B B B B C C C C

1 1 1 2 2 2 2 3 3 3 3 (NIL)

This systematic generation begins with well-formed but incomplete expressions of
length 2 and represents all well-formed intermediate expressions of length up to 12.
Complete expressions of the language are recognizable by their result category (NIL).

Each derivation consists of a surface, a sequence of rule names represented by num-
bers, and a result category. A single derivation is illustrated as follows:

10.4.3 COMPLETE WELL-FORMED EXPRESSION IN akbkck

A A A B B B C C C
1 1 2 2 2 3 3 3 (NIL)

The surface and the rule name sequence are arranged to show which word is added
by which rule. The derivation characterizes a well-formed expression because it cor-
responds to the final state (ε rp3), here written as ‘3 (NIL),’ i.e., an element of the
set STF of the LA Grammar for akbkck defined in 10.2.3.

The relation between this LA Grammar, the LA Parser illustrated in 10.4.1, and
the LA Generator illustrated in 10.4.2 demonstrates the notion of absolute type trans-
parency 9.3.1 between a grammar formalism, a parser, and a generator in practice.
So far, LA Grammar is the only grammar formalism which achieves absolute type
transparency as described by Berwick and Weinberg (1984), p. 41.

10.5 LA Grammar for Natural Language

Before we turn, in the next chapter, to the formal properties of LA Grammar (such as
language classes, generative capacity, and complexity), let us illustrate the application
of LA Grammar to natural language. The purpose is to show the linguistic motivation
of LA Grammar analyses in terms of the traditional notions of valency, agreement,
and word order on the one hand, and a time-linear derivation on the other.

The formalism of LA Grammar originated in the attempt to implement the C gram-
mar defined in SCG as a parser (NEWCAT, p. 7). Consider the following C Grammar
analysis of the English sentence Mary gave Fido a bone.
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10.5.1 CONSTITUENT STRUCTURE ANALYSIS IN C GRAMMAR

This tree is a constituent structure satisfying condition 8.4.3 and could be used in
PS as well as in C Grammar. However, because of its complex categories and the
concomitant bias towards a bottom-up derivation, it is closer to a C Grammar analy-
sis.

Compared to the algebraic definition of C Grammar 7.4.2, the categories are of an
especially simple variety, however. They consist of lists of category segments, and not
of categorial functor-argument structures based on slashes and multiple parentheses
as in traditional C Grammar.

The simplified categories are sufficient to encode the relevant linguistic valency
properties. For example, the category (N′ D′ A′ V) of gave indicates a verb V which
has valency positions for a nominative N′, a dative D′, and an accusative A′. Corre-
spondingly, the category (SN′ SNP) of the determiner a(n) indicates a functor which
takes a singular noun SN′ to make a singular noun phrase SNP.

The C grammatical derivation may begin by combining gave and Fido, whereby
the SNP segment in the category of Fido cancels the D′ segment in the category of
gave, resulting in the intermediate expression gave Fido of category (N′ A′ V). Next,
the determiner a and the noun bone must be combined, resulting in the intermedi-
ate expression a bone of category (SNP). This cancels the A′ segment in the cate-
gory of gave Fido, resulting in the intermediate expression gave Fido a bone of cat-
egory (N′ V). Finally, the segment SNP in the category of Mary cancels the segment
N′ in the category of gave Fido a bone, resulting in a complete sentence of cate-
gory (V).

The lexical categories of the C grammatical analysis 10.5.1 may be re-used in the
corresponding left-associative analysis 10.5.2, because their list structure happens to
be in concord with the algebraic definition of LA Grammar in 10.2.1.
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10.5.2 TIME-LINEAR ANALYSIS IN LA GRAMMAR

This analysis is based on LA E2, an LA Grammar defined in 17.4.1.
In the LA grammar analysis, the same valency positions are canceled by the same

fillers as in C grammar analysis. However, the left-associative derivation always com-
bines a sentence start with a next word into a new sentence start, beginning with the
first word of the sentence.

The initial combination of Mary and gave is based on the categorial operation

(SNP) (N′ D′ A′ V) ⇒ (D′ A′ V).

The category segment SNP (for singular noun phrase) of Mary cancels the first seg-
ment N′ (for nominative) of the category of gave. Linguistically speaking, the nomina-
tive valency of the verb is filled here by the category of the first word. The agreement
between the segments SNP and N′ is defined in the variable definition of 17.4.1.

The result of this first combination is a sentence start of the category (D′ A′ V), indi-
cating an intermediate expression which still needs a D (dative) and an A (accusative)
to become a complete sentence. This new sentence start combines with the next word
Fido of category (SNP), whereby the category segment SNP cancels the first segment
of the sentence start category (D′ A′ V).

The result of the second combination is a sentence start of the category (A′ V),
indicating an intermediate expression which still needs an A (accusative) in order
to become complete. This new sentence start combines with the next word, i.e., the
determiner a(n) of category (SN′ SNP). The categorial operation of the rule used in
this combination has the form

(A′ V) (SN′ SNP) ⇒ (SN′ V).

Thus, the result segment SNP of the determiner fills the valency position of the ac-
cusative in the category of the sentence start, while the argument position SN′ of the
determiner is added to the sentence start category, opening a new valency position for
a singular noun.
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In the next composition of the sentence start Mary gave Fido a and the next word
bone, this new valency position is canceled by the category (SN) of the next word. The
result is a sentence start of the category (V), for verb. The absence of unfilled valency
positions indicates that the expression is now complete. This completeness is only
potential, however, because natural language expressions can always be continued –
here, for example, by regularly or because she is so fond of this cute little dog which
she picked up in Denver when visiting her mother who told her while driving to the
cleaners that the Millers had recently moved to Detroit because . . . , etc.

The time-linear analysis 10.5.2 captures the same linguistic intuitions about valency,
agreement, and word order as the constituent structure analysis 10.5.1, which is shown
by their use of the same lexical categories. The difference is that 10.5.1 is based on the
principle of possible substitutions, while 10.5.2 is based on the principle of possible
continuations.

In a constituent structure analysis, intermediate expressions such as Mary gave or
Mary gave Fido a are considered illegal because they are not supported by the sub-
stitution (8.4.7) and movement (8.4.8) tests on which constituent structure analysis
is based. In a left-associative derivation, on the other hand, they are legitimate in-
termediate expressions because they may be continued into a complete well-formed
sentence.

Conversely, expressions like gave Fido or gave Fido a bone will not occur as in-
termediate expressions in LA Grammar because they cannot be continued to yield
complete well-formed sentences. In C and PS Grammar, on the other hand, such
expressions are used as intermediate expressions because they are supported by the
substitution and movement tests which motivate C and PS Grammar intuitively.

The LA Grammar LA E2 (17.4.1) underlying derivation 10.5.2 can be used by a
parser directly: the parser reads the sentence word form by word form, each time
applying the rules of the LA Grammar, always combining a sentence start with a next
word into a new sentence start. During the parsing procedure, the evolving trace of
the parse may be displayed directly as the grammatical analysis.

The following automatic analysis illustrates the structured list format used in NEW-
CAT and CoL, already familiar from the artificial language analyses in 10.3.2 and
10.4.1 above.

10.5.3 LEFT-ASSOCIATIVE PARSING OF EXAMPLE 10.5.2

NEWCAT> Mary gave Fido a bone \.

*START
1

(SNP) MARY
(N D A V) GAVE

*NOM+FVERB
2

(D A V) MARY GAVE
(SNP) FIDO
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*FVERB+MAIN
3

(A V) MARY GAVE FIDO
(SN SNP) A

*FVERB+MAIN
4

(SN V) MARY GAVE FIDO A
(SN) BONE

*DET+NOUN
5

(V) MARY GAVE FIDO A BONE
(V DECL) .

*CMPLT
6

(DECL) MARY GAVE FIDO A BONE .

The final combination adds a full stop, which characterizes the expression as a declar-
ative sentence (LA E3 defined in 17.5.5).10

This parsing analysis contains not only all the information of the time-linear tree
format 10.5.2, but in addition specifies for each left-associative combination the name
of the rule involved – which indicates the name of the currently active rule package at
the same time (Sect. 10.3). The structural difference between the linear tree 10.5.2 and
the structured list 10.5.3 corresponds to the difference between the equivalent formats
(i) and (iii) in 10.3.1.

The next example illustrates the LA Grammar handling of a discontinuous ele-
ment:

10.5.4 ANALYSIS OF A DISCONTINUOUS ELEMENT

NEWCAT> Fido dug the bone up \.

*START
1

(SNP) FIDO
(N A UP V) DUG

*NOM+FVERB
2

(A UP V) FIDO DUG
(SN SNP) THE

*FVERB+MAIN
3

(SN UP V) FIDO DUG THE
(SN) BONE

*DET+NOUN
4

(UP V) FIDO DUG THE BONE
(UP) UP

10 The distinction between a valency position, e.g.A′, and a valency filler, e.g. SNP, by means
of an apostrophe in the valency position is not reflected by the NEWCAT parser.
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*FVERB+MAIN
5

(V) FIDO DUG THE BONE UP
(V DECL) .

*CMPLT
6

(DECL) FIDO DUG THE BONE UP .

The relation between the discontinuous elements dug and up is represented by the
segment UP′ in the category (N′ A′ UP′ V) of dug. The final position of up is specified
by the order of valency positions (here N′ A′ UP′) in the functor category.

The “problem” of discontinuous elements (8.5.1, 8.5.2) exists only within con-
stituent structure analysis. It is entirely self-inflicted and the result of tests (8.4.8)
which are like moving the bones of a lifeless body – instead of (i) recognizing the
fundamental role of the time-linear structure of natural language in accordance with
the second law (5.4.4) of de Saussure and (ii) broadening the empirical base by mod-
eling the mechanism of living natural language communication.

LA Grammar, in contrast, is motivated by the time-linear structure of natural lan-
guage and the valency, agreement, and word order properties of traditional grammar.
The parse trace 10.5.4 shows how discontinuous structures may be treated in a stan-
dard way by coding a certain filler position into the relevant functor category and
canceling this position at a later point.

In conclusion, consider the handling of an ungrammatical sentence by the NEWCAT
parser:

10.5.5 LA ANALYSIS OF UNGRAMMATICAL INPUT

NEWCAT> the young girl give Fido the bone \.

ERROR
Ungrammatical continuation at: "GIVE"

*START
1

(SN SNP) THE
(ADJ) YOUNG

*DET+ADJ
2

(SN SNP) THE YOUNG
(SN) GIRL

*DET+NOUN
3

(SNP) THE YOUNG GIRL

The derivation begins normally, but breaks off after the third word, because the gram-
mar does not provide a possible continuation for the current sentence start the young
girl and the next word give. The reason is that the category segment SNP does not
agree with the nominative segment NOM of give. This is specified in the variable
definition of LA E2 in 17.4.1.
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LA Parsers analyze the grammatical beginning of ungrammatical input as far as
possible, giving a precise grammatical description of the sentence start. This is of
practical use for both the debugging and upscaling of a given LA Grammar. In de-
bugging, the break off point and the grammatical structure of the sentence start tell us
exactly which rule of the grammar should have fired, what its input categories happen
to be, etc. Conversely, if the system accepts input which is ungrammatical (error aris-
ing in negative testing), the LA analysis gives an exact grammatical description of the
location where the break off should have been.

In upscaling, a new construction may be built up step-by-step from a working
sentence start and then led back into the old network of possible continuations as
shown by the finite state backbone of the grammars 10.2.4, 17.4.2, 17.5.1, 17.5.6,
and 18.5.12. This characteristic property of LA Grammar follows from its time-linear
derivation structure and will be used extensively in Part III for developing larger and
larger fragments of English (LA E1 to LA E3 in Chap. 17) and German (LA D1 to LA
D4 in Chap. 18).

Exercises

Section 10.1
1. What is meant by a ‘left-associative grouping of operands?’ What other group-

ings of operands are possible?
2. Which property of natural language is formally modeled by a left-associative

derivation order?
3. Compare the principle of possible continuations to the principle of possible sub-

stitutions. How do these different principles relate to the intuitive notions of time
linearity and constituent structure? Which elementary formalisms are based on
which principle?

4. Explain the relation between different rule formats and conceptual derivation
orders in C , PS , and LA Grammar.

5. What is a syntagma?

Section 10.2
1. Explain the algebraic definition of LA Grammar.
2. Which part of a left-associative rule is used for pattern matching?
3. Which part of a left-associative rule participates in the definition of a finite state

transition network?
4. Why do the transitions going into a state all represent the same rule, while the

transitions going out of a state all represent different rules?
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5. Restate the LA Grammar for akbk, explain how it works, and compare it with the
corresponding C Grammar 7.4.4 and PS Grammar 7.1.3.

6. Define an LA Grammar for a2kbk.
7. Define an LA Grammar for akb2k.
8. What are the conditions for a left-associative derivation to terminate?

Section 10.3
1. What is the relation between left-associative tree structures and structured lists?

Which format is best suited for computational analysis, and why?
2. Describe the numbered sections in the output of a NEWCAT parse and explain

their dual function.
3. Why is it remarkable that the LA Grammar for akbkck resembles that for akbk

so closely? Base your answer on the notions PS hierarchy, language class, com-
plexity, and parsing algorithm.

4. Define LA Grammars for {akbkck}+, akbkckdk, and akbkckdkekfk. What is the PS
Grammar language class of these languages? What is their LA Grammar com-
plexity?

Section 10.4
1. What is the relation between an LA Parser, an LA Grammar, and an LA Genera-

tor?
2. Why does it make sense to specify the maximal length and the specific words to

be used when starting an LA Generator? Which of these restrictions is especially
useful for artificial languages, and which for natural languages?

3. Explain how the start of a PS Grammar derivation differs from that in LA Gram-
mar. Does the start symbol of PS Grammar have a counterpart in LA Grammar?

4. Do you see a connection between the formal LA analysis 10.4.1 and the schema
of language understanding in 5.4.1?

5. Do you see a connection between the formal LA generation 10.4.2 and the
schema of language production 5.4.2?

6. Explain the properties of type transparency in LA Grammar.

Section 10.5
1. What are the similarities and differences between the C and the LA Grammar

analysis of natural language?
2. How do intermediate expressions differ in a constituent structure analysis and a

left-associative analysis of natural language?
3. Why is the handling of discontinuous elements a problem for an analysis based

on constituent structure, but not for one based on the time-linear structure of
natural language?

4. When does an LA Parser stop the analysis of an ungrammatical expression?
5. Give three different reasons why an LA Parser may stop the analysis before

reaching the end of the input.



11. Hierarchy of LA Grammar

In this chapter, different kinds of LA Grammar are defined via natural restrictions
of its rule system. Then these kinds of grammar are characterized in terms of their
generative capacity and computational complexity.

Section 11.1 shows that LA Grammar in the basic, unrestricted form of its alge-
braic definition generates the recursive languages exactly. Section 11.2 describes pos-
sible restrictions on LA Grammar and defines the hierarchy of A, B, and C LAGs.
Section 11.3 describes the origin of nonrecursive and recursive ambiguities and their
impact on the number of rule applications. Section 11.4 compares the notions of prim-
itive operation used for determining complexity in context-free PS Grammar and in
C LAGs, and explains the relation of the C LAGs to the automata-theoretic concepts of
deterministic and nondeterministic automata. Section 11.5 defines the sub-hierarchy
of linear C1, polynomial C2, and exponential C3 LAGs within the class of C LAGs,
which differ solely in their degrees of ambiguity.

11.1 Generative Capacity of Unrestricted LAG

The generative capacity of a grammar formalism follows from its algebraic definition.
It specifies the form of the rules, which in turn determines which structures can be
handled by the formalism and which cannot.

According to the algebraic definition of LA Grammar (10.2.1), a rule ri consists of
two parts, a categorial operation coi and the associated rule package rpi . The catego-
rial operation coi is defined as a total recursive function.

A function is recursive if its assignment (7.4.1) can be described as a mechanical
step-by-step procedure called an algorithm. A function is total if there exists an algo-
rithm which assigns to each element in the domain a value in the range. In a partial
function , in contrast, the assignment is undefined for parts of the domain.

Intuitively, the class of total recursive functions represents those structures which
may be computed explicitly and completely. Formally, the total recursive functions
characterize the class of recursive languages.

A language is recursive if and only if there is an algorithm (i.e., a total recursive
function) which can decide for arbitrary input in finitely many steps whether or not
the input belongs to the language. The class of recursive languages comprises all

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_11, © Springer-Verlag Berlin Heidelberg 2014
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languages which are decidable. Thus, the recursive languages constitute the largest
class the elements of which have a completely specifiable structure.1

LA Grammar in its basic, unrestricted form (definition 10.2.1) has the following
generative capacity:

11.1.1 GENERATIVE CAPACITY OF UNRESTRICTED LA GRAMMAR

Unrestricted LA Grammar accepts and generates all and only the recursive
languages.

The two parts of this statement are formulated and proven as theorems.2

11.1.2 THEOREM 1

Unrestricted LA Grammar accepts and generates only the recursive lan-
guages.

Proof Assume an input string of finite length n. Each word in the input string has a
finite number of readings (> 0).

Combination step 1: The finite set of start states STS and all readings of the first
word w1 result in a finite set of well-formed expressions

WE1 = {(ss′ rpS) | ss′ ∈ (W+ × C+)}.
Combination step n: Combination step k − 1, k > 1, produces a finite set of well-

formed expressions

WEk = {(ss′ rpi ) | i ∈ n, ss′ ∈ (W+ × C∗) and the surface of each ss′ has length k}.
The next word wk+1 has a finite number of readings.

Therefore, the Cartesian product of all elements of WEk and all readings of the cur-
rent next word will be a finite set of pairs. Each pair is associated with a rule package
containing a finite set of rules. Therefore, combination step k will produce only finitely
many new sentence starts. The derivation of this finite set of new sentence starts is de-
cidable because the categorial operations are defined to be total recursive functions. �

Because all possible left-associative analyses for any finite input can be derived
in finitely many steps each of which is decidable, there is no halting problem in
LA Grammar and associated parsers. Thus LA Grammar satisfies condition 3 of the
generative grammar desiderata 9.5.2.

1 In automata theory, the recursive languages are defined as those of which each expression
may be recognized by at least one Turing machine in finitely many steps (‘halts on all
inputs’, Hopcroft and Ullman 1979, p. 151). The PS Grammar hierarchy does not provide a
formal characterization of the recursive languages – in contrast to the regular, context-free,
context-sensitive, and recursively enumerable languages, which have both an automata-
theoretic and a PS Grammar definition.

2 CoL, Theorems 1 and 2, pp. 134f.
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11.1.3 THEOREM 2

Unrestricted LA Grammar accepts and generates all recursive languages.

Proof 3 Let L be a recursive language with the alphabet W. Because L is recursive,
there is a total recursive function � : W∗ → {0,1}, i.e., the characteristic function
of L. Let LAGL be an LA Grammar defined as follows:

The set of word surfaces of LAGL is W.
The set of category segments C =def W ∪ {0,1}.
For arbitrary e, f ∈ W+, [e (f)] ∈ LX if and only if e = f.

LX =def {[a (a)], [b (b)], [c (c)], [d (d)], . . . }
STS =def {[(segc) {r1, r2}]}, where segc ∈ {a,b, c,d, . . . }
r1: (X) (segc) ⇒ (X segc) {r1, r2}
r2: (X) (segc) ⇒ � (X segc) { }
STF =def {[(1) rp2]}
After any given combination step, the rule package rp1 offers two choices: applica-

tion of r1 to continue reading the input string, or application of r2 to test whether the
input read so far is a well-formed expression of L. In the latter case, the function � is
applied to the concatenation of the input categories, which are the same as the input
surfaces. If the result of applying r2 is [(1) rp2],4 the input surface is accepted; if it is
[(0) rp2], it is rejected.

Since the categorial operations of LAGL can be any total recursive function, LAGL

may be based on �, the characteristic function of L. Therefore, LAGL accepts and
generates any recursive language. �

In LAGL, the prefinal combination steps serve only to read the surface into the cat-
egory. At the final combination step, the complete surface is available in the category
and is analyzed in one step by a very complex categorial operation defined as the
characteristic function � of the language.

Unrestricted LA Grammars are called A LAGs because they generate exactly all
recursive (decidable) languages.

11.1.4 DEFINITION OF THE CLASS OF A LAGS

The class of A LAGs consists of unrestricted LA Grammars and generates all
recursive languages.

In contrast, unrestricted PS Grammars (8.1.1) generate the undecidable set of the re-
cursively enumerable languages. Thus, LA Grammar and PS Grammar are not equiv-
alent in the basic unrestricted form of their respective algebraic definitions.

3 This proof was provided by Dana Scott.
4 I.e., if � maps the category (X segc), representing the surface, into the category (1).
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11.2 LA Hierarchy of A, B, and C LAGs

The complexity of a grammar formalism – defined as the upper bound on the number
of operations required in the analysis of arbitrary input – depends on the following
two parameters:

11.2.1 PARAMETERS OF COMPLEXITY

– The amount of computation per rule application required in the worst case.
– The number of rule applications relative to the length of the input needed in the

worst case.

These parameters are independent of each other and apply in principle to any rule-
based grammar formalism.

In LA Grammar, the amount parameter depends solely on the categorial operations
coi (10.2.1), while the number parameter is determined completely by the degree of
ambiguity. Thus, there are two obvious main approaches to restricting LA Grammars.

11.2.2 MAIN APPROACHES TO RESTRICTING LA GRAMMAR

R1: Restrictions on the form of categorial operations in order to limit the
maximal amount of computation required by arbitrary rule applications.
R2: Restrictions on the degree of ambiguity in order to limit the maximal
number of possible rule applications.

Approach R1 in turn suggests two subtypes of restrictions.

11.2.3 POSSIBLE RESTRICTIONS ON CATEGORIAL OPERATIONS

R1.1: Specifying upper bounds for the length of categories.
R1.2: Specifying restrictions on patterns used in the definition of categorial
operations.

These different ways of restricting categorial operations result in two subclasses of
A LAGs, called B LAGs and C LAGs. The B LAGs are defined in terms of a linear
bound on the length of categories relative to the length of the input and correspond to
the restriction type R1.1.

11.2.4 DEFINITION OF THE CLASS OF B LAGS

The class of bounded LA Grammars, or B LAGs, consists of grammars in
which for any complete well-formed expression E the length of intermediate
sentence start categories is bounded by k · n, where n is the length of E and k
is a constant.
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The language class generated by the B LAGs is equal to the class of context-sensitive
languages in the PS Grammar hierarchy. The proof5 is analogous to 11.1.3 and based
on corresponding restrictions on linearly bound automata, using the LA category of
the last combination step as a tape. The B LAGs are a proper subset of the A LAGs
because CS ⊂ REC.6

In a B LAG, a categorial operation may be any total recursive function. Therefore,
there is no limit on the amount of computation required by a rule application. We
define the C LAGs as a subclass of the B LAGs by limiting the amount of computation
required by individual categorial operations coi by a constant. This restriction of type
R1.2 is implemented by defining formal patterns which distinguish between constant
and nonconstant amounts of computation.

In the following rule schemata, the amount of computation required by the catego-
rial operations is constant, independent of the length of the input categories.

11.2.5 RULE SCHEMATA WITH CONSTANT CATEGORIAL OPERATIONS

ri : (seg1 . . . segk X) cat2 ⇒ cat3 rpi

ri : (X seg1 . . . segk) cat2 ⇒ cat3 rpi

ri : (seg1 . . . segm X segm+1 . . . segk) cat2 ⇒ cat3 rpi

These schemata have in common that the pattern matching of the categorial operation
has to check exactly k segments in the ss category. These patterns of categorial opera-
tions are constant because their patterns always check a category from the outer ends
seg1 . . . segk , disregarding an arbitrarily large sequence in the middle of the category.

Categorial operations without this property do not provide a constant upper bound
on the amount of computation required. A rule schema with a nonconstant categorial
operation is illustrated below.

11.2.6 RULE SCHEMA WITH NONCONSTANT CATEGORIAL OPERATION

ri : (X seg1 . . . segk Y) cat2 ⇒ cat3 rpi

In rules of this form, the pattern matching has to search through an arbitrary number
of category segments (represented by X or Y, depending on which side the search
begins). Because the length of X and Y may have become arbitrarily long in previ-
ous rule applications, the amount of computation needed to perform the categorial
operation depends on the overall length of the ss-category.

LA Grammars of which the rules use only constant categorial operations constitute
the class of C LAGs:

5 CoL, Theorem 5, p. 142.
6 Hopcroft and Ullman (1979), Theorem 9.8, p. 228. CS stands for the class of context-

sensitive languages and REC for the class of recursive languages.



214 11. Hierarchy of LA Grammar

11.2.7 DEFINITION OF THE CLASS OF C LAGS

The class of constant LA Grammars, or C LAGs, consists of grammars in
which no categorial operation coi looks at more than k segments in the sen-
tence start categories, for a finite constant k.7

The LA Grammar classes considered so far constitute the following hierarchy:

11.2.8 THE HIERARCHY OF A LAGS, B LAGS, AND C LAGS

The class of A LAGs accepts and generates all recursive languages, the class
of B LAGs accepts and generates all context-sensitive languages, and the class
of C LAGs accepts and generates many context-sensitive, all context-free, and
all regular languages.

That all context-free languages are recognized and generated by the C LAGs is
proven8 by C LAGs with categorial operations which modify only the beginning of
the cat1 pattern and thus correspond to the restrictions on pushdown automata. The
class of context-free languages is a proper subset of the C languages because the C
languages contain also context-sensitive languages (e.g., 10.2.3).

The class of regular languages is accepted and generated by C LAGs in which the
length of the categories is restricted by an absolute constant k.9 The regular, context-
free, and context-sensitive languages of the PS Grammar hierarchy have thus been
reconstructed in LA Grammar.10

7 This finite constant will vary between different grammars.
8 CoL, Theorem 4, p. 138.

A context-free C LAG (cf LAG for short) consists only of rules with the form

ri : (aX) (b) ⇒ (αX) rpi , with a,b ∈ C and α ∈ C+

This restriction on the ss- and ss′-categories corresponds to the working of a PDA which
may write not just one symbol but a sequence of symbols into the stack (Hopcroft and
Ullman 1979, Chap. 5.2). The following two assertions have to be proven:

1. For each PDA M, a cf LAG σ may be constructed such that L(M) = L(σ ).
This implies CF ⊆ Ccf .
2. For each cf LAG σ , a PDA M may be constructed such that L(σ ) = L(M).
This implies Ccf ⊆ CF.
In showing 1 and 2, one has to take into consideration that a cf LAG uses rules while

a PDA uses states, which are not entirely equivalent. Thus, it is necessary to provide a
constructive procedure to convert states into rules and rules into states – a cumbersome, but
not particularly difficult task.

Note with respect to 1 that ε-moves are forbidden in cf LAGs, but not in PDAs (Hopcroft
and Ullman 1979, p. 24). However, there exists for each context-free language a PDA work-
ing without ε-moves (Harrison 1978, Theorem 5.5.1) and for an ε-free PDA a cf LAG may
be constructed.

9 CoL, Theorem 3, p. 138.
10 Another possibility for modifying the generative capacity of LA Grammar consists – at

least theoretically – in changing clause 4 of the algebraic definition 10.2.1. For example,
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11.3 Ambiguity in LA Grammar

The second main approach to restricting LA Grammar (R2 in 11.2.2) concerns the
number of rule applications. This number is determined by the following factors:

11.3.1 FACTORS DETERMINING THE NUMBER OF RULE APPLICATIONS

The number of rule applications in an LA derivation depends on

1. the length of the input;
2. the number of rules in the rule package to be applied in a certain combination to

the analyzed input pair (reading);
3. the number of readings11 existing at each combination step.

Factor 1 is grammar-independent and used as the length n in formulas characterizing
complexity (8.2.1).

Factor 2 is a grammar-dependent constant. For example, if the largest rule package
of an LAG contains five rules, then the maximal number of rule applications in an
unambiguous derivation will be at most 5 · n, where n is the length of the input.

Only factor 3 may push the total number of rule applications beyond a linear in-
crease. In a given left-associative composition, an additional reading comes about
when more than one rule in the current rule package applies successfully to the input.
Whether for a given input more than one rule in a rule package may be successful
depends on the input conditions of the rules.

if the categorial operations had been defined as arbitrary partial recursive functions, then
LA Grammar would generate exactly the recursively enumerable languages. This would
amount to an increase of generative capacity, making LA Grammar weakly equivalent to PS
Grammar. Alternatively, if the categorial operations had been defined as arbitrary primitive
recursive functions, then it could be shown by analogy to Theorem 2 that the resulting kind
of LA Grammar generates exactly the primitive recursive languages. This would amount to
a decrease in generative capacity compared to the standard definition.

Using alternative definitions of clause 4 in 10.2.1 is not a good method to obtain different
subclasses of LA Grammar, however. First, alternating the categorial operations between
partial recursive, total recursive, and primitive recursive functions is a very crude method.
Secondly, the resulting language classes are much too big to be of practical interest: even
though the primitive recursive functions are a proper subset of the total recursive func-
tions, the primitive recursive functions properly contain the whole class of context-sensitive
languages. Third, the categorial operations have been defined as total recursive functions
in 10.2.1 for good reason, ensuring that basic LA Grammar has the highest generative ca-
pacity possible while still being decidable.

11 For reasons of simplicity, only syntactic causes of ambiguity are considered here. Lexical
ambiguities arising from multiple analyses of words have so far been largely ignored in
formal language theory, but are unavoidable in the LA Grammatical analysis of natural
language. The possible impact of lexical ambiguity on complexity is discussed in CoL,
pp. 157f. and 248f.
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Between the input conditions of two rules one of the following relations must
hold:

11.3.2 POSSIBLE RELATIONS BETWEEN INPUT CONDITIONS

1. Incompatible input conditions: two rules have incompatible input conditions if
there exist no input pairs which are accepted by both rules.

2. Compatible input conditions: two rules have compatible input conditions if there
exists at least one input pair accepted by both rules and there exists at least one
input pair accepted by one rule, but not the other.

3. Identical input conditions: two rules have identical input conditions if it holds for
all input pairs that they are either accepted by both rules or rejected by both rules.

Examples of incompatible input conditions are (a X) (b) and (c X) (b), as well as
(a X) (b) and (a X) (c). If all the rules in a rule package have incompatible input
conditions, the use of this rule package cannot be the cause of a syntactic ambiguity.

11.3.3 DEFINITION OF UNAMBIGUOUS LA GRAMMARS

An LA Grammar is unambiguous if and only if (i) it holds for all rule pack-
ages that their rules have incompatible input conditions, and (ii) there are no
lexical12 ambiguities.

Examples of unambiguous C LAGs are 10.2.2 for akbk and 10.2.3 for akbkck.
An example of compatible input conditions is (a X) (b) and (X a) (b). Compatible

input conditions are the formal precondition for syntactic ambiguity in LA Grammar.

11.3.4 DEFINITION OF SYNTACTICALLY AMBIGUOUS LA GRAMMARS

An LA Grammar is syntactically ambiguous if and only if (i) it has at least one
rule package containing at least two rules with compatible input conditions,
and (ii) there are no lexical ambiguities.

The number of possible readings produced by a syntactically ambiguous LA Gram-
mar depends on its ambiguity structure, which may be characterized in terms of the
two binary features ±global and ±recursive. We begin with the feature ±global.

12 An LA Grammar is lexically ambiguous if its lexicon contains at least two analyzed words
with the same surface. A nonlinguistic example of a lexical ambiguity is propositional
calculus , e.g., (x ∨ y ∨ z) ∧ (. . .) . . ., whereby the propositional variables x, y, z, etc., may
be analyzed lexically as ambiguous between [x (1)] and [x (0)], [y (1)] and [y (0)], etc.
Thereby [x (1)] is taken to represent a true proposition x, and [x (0)] a false one.

While syntactic ambiguities arise in the rule-based derivation of more than one new sen-
tence start, lexical ambiguities are caused by additional readings of the next word. Syntactic
and lexical ambiguities can also occur at the same time in an LA Grammar. Furthermore,
syntactic ambiguities can be reformulated into lexical ambiguities and vice versa (TCS,
pp. 303f.)
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In linguistics, a sentence is called syntactically ambiguous if it has more than one
reading or structural analysis, as in the following example:

11.3.5 +GLOBAL SYNTACTIC AMBIGUITY

Flying airplanes can be dangerous.

One reading refers to airborne planes, the other to the activity of piloting. This ambi-
guity is +global because it is a property of the whole sentence.

Besides +global ambiguity there is also −global (or local) ambiguity in the time-
linear analysis of language. For example, when reading the following sentence from
left to right there are two readings up to and including the word barn:

11.3.6 −GLOBAL SYNTACTIC AMBIGUITY

The horse raced by the barn fell.

The first reading interprets raced by the barn as the predicate of the main clause.
This initially dominant reading is −global, however, because it is eliminated by the
continuation with fell. The second reading interprets raced by the barn as a reduced
relative clause and survives as the only reading of the overall sentence. Such examples
are called garden path sentences because they suggest an initial interpretation which
cannot be maintained.

In LA Grammar, the difference between +global and −global ambiguities consists
in whether more than one reading survives to the end of the sentence (11.3.5) or
not (11.3.6). Thereby, +global and −global readings are treated alike as parallel time-
linear derivation branches. This is in contrast to the substitution-based systems of C
and PS Grammar, which recognize only ambiguities which are +global.

The ±global distinction has no impact on complexity in LA Grammar and is made
mainly for linguistic reasons. The ±recursive distinction, on the other hand, is crucial
for the analysis of complexity, because it can be shown that in LA Grammars with
nonrecursive ambiguities the maximal number of rule applications per combination
step is limited by a grammar-dependent constant (11.3.7, Theorem 3).

An ambiguity is +recursive if it originates within a recursive loop of rule applica-
tions. In other words, a certain state (cat rpi) has several continuations for a certain
next word category, such that one or more of these continuations eventually return
to this particular state, thus enabling a repetition of the ambiguity split. Examples of
C LAGs with +recursive, −global ambiguities are 11.5.4 for WWR and 11.5.6 for
WW; a C LAG with +recursive, +global ambiguities is 11.5.8 for SubsetSum.

An ambiguity is −recursive if none of the branches produced in the ambiguity split
returns to the state which caused the ambiguity. Examples of −recursive ambiguity
are the C LAG for akbkcmdm ∪ akbmcmdk (11.5.2), which is +global, and the C LAGs
for natural language in Chaps. 17 and 18, which exhibit both +global and −global
ambiguities.



218 11. Hierarchy of LA Grammar

11.3.7 THEOREM 3

The maximal number of rule applications in LA Grammar with only
−recursive ambiguities is

(n − (R − 2)) · 2(R−2)

for n > (R−2), where n is the length of the input and R is the number of rules
in the grammar.

Proof Parsing an input of length n requires (n−1) combination steps. If an LA Gram-
mar has R rules, then one of these rules has to be reapplied after R combination steps
at the latest. Furthermore, the maximal number of rule applications in a combination
step for a given reading is R.

According to the definition of −recursive ambiguity, rules causing a syntactic am-
biguity may not be reapplied in a time-linear derivation path (reading). The first
ambiguity-causing rule may produce a maximum of R − 1 new branches (assuming
its rule package contains all R rules except for itself), the second ambiguity causing
rule may produce a maximum of R − 2 new branches, etc. If the different rules of
the LA Grammar are defined with their maximally possible rule packages, then after
R − 2 combination steps a maximum of 2(R−2) readings is reached. �

Theorem 3 means that in LA Grammars which are not recursively ambiguous the
number of rule applications grows only linearly with the length of the input.

11.4 Complexity of Grammars and Automata

The complexity of a grammar kind and its language class is measured in terms of
the amount of primitive operations required to process an input in the worst case.
Which operation is suitable to serve as the primitive operation and how the number of
primitive operations required should be determined, however, is not always obvious.

This holds in particular for grammar formalisms which are not type-transparent.
Historically, the complexity of PS Grammar kinds and their language classes was not
specified directly in terms of grammar properties, but rather in terms of equivalent
abstract automata.13 These automata each have their own kind of primitive opera-
tion.

13 Abstract automata consist of such components as a read/write-head, a write-protected in-
put tape, a certain number of working tapes, the movement of the read/write-head on a
certain tape from one cell to another, the reading or deleting of the content in a cell, etc.
Classic examples of abstract automata are Turing machines (TMs), linearly bounded au-
tomata (LBAs), pushdown automata (PDAs), and finite state automata (FSAa). There is a
multitude of additional abstract automata, each defined for the purpose of proving various
special complexity, equivalence, and computability properties.



11.4 Complexity of Grammars and Automata 219

In order to establish the complexity of the Earley algorithm (9.3.4), for example, the
primitive operation was chosen first and motivated as follows:

The Griffith and Petrick data is not in terms of actual time, but in terms of “prim-
itive operations.” They have expressed their algorithms as sets of nondeterministic
rewriting rules for a Turing-machine-like device. Each application of one of these is
a primitive operation. We have chosen as our primitive operation the act of adding a
state to a state set (or attempting to add one which is already there). We feel that this
is comparable to their primitive operation because both are in some sense the most
complex operation performed by the algorithm whose complexity is independent of
the size of the grammar and the input string.

Earley (1970), p. 100

Thus, the complexity statement “context-free PS Grammars parse in n3” does not
apply to context-free PS Grammars directly, but to a certain parsing algorithm which
takes PS Grammars of this class as input. Accordingly, when Valiant (1975) was able
to reduce the complexity of the context-free languages from n3 to n2.8, this was due
not to an improvement in PS Grammar, but rather to Valiant’s finding an improved
parsing algorithm defined as an abstract automaton.

In contrast, the C LAGs make it possible to define the primitive operation (i) directly
for the grammar formalism and (ii) transfer it to its parser.

11.4.1 PRIMITIVE OPERATION OF THE C LAGS

The primitive operation of the C LAGs is a rule application (also counting
unsuccessful attempts).

Rule applications are suitable as the primitive operation of C LAGs because the com-
putation needed by their categorial operations is limited by a constant. That the prim-
itive operation of C LAGs may double as the primitive operation of its parser is due
to the type transparency (9.3.1) of LA Grammar.

It follows that the complexity of C LAGs depends solely on their degree of ambi-
guity. The linguistic notion of ambiguity is closely related to the automata-theoretic
notion of nondeterminism. Before investigating the complexity properties of C LAGs,
let us therefore clarify the distinction between deterministic and nondeterministic au-
tomata in its relation to LA Grammar.

An automaton is called deterministic if each derivation step of its algorithm per-
mits at most one next step. In this sense, all unambiguous LA Grammars (11.3.3) are
deterministic.

An automaton is called nondeterministic if its algorithm has to choose between sev-
eral (though finitely many) next steps, or equivalently, has to perform several next
steps simultaneously. In this sense, all ambiguous LA Grammars (11.3.4) are nonde-
terministic.14

14 In PS Grammar, the notions deterministic and nondeterministic have no counterparts.
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A nondeterministic automaton accepts an input if at least one possible path ends
in an accepting state. A problem kind has the nondeterministic time complexity
NTIME(f (n)) if the longest accepted path requires f (n) operations (where n stands
for the length of the input). A problem kind has the nondeterministic space complexity
NSPACE(f (n)) if the longest accepted path requires f (n) memory cells.

NTIME and NSPACE complexity are based on the assumption that the nondeter-
ministic automaton can guess the longest accepted path. Thus, NTIME and NSPACE
must be seen in light of the fact that there may exist many alternative paths which
may have to be computed in order to arrive at a solution, but which are not taken into
account by these complexity measurements.

In the case of a deterministic automaton, on the other hand, a problem kind is char-
acterized in terms of the time complexity DTIME(f (n)) and the space complexity
DSPACE(f (n)). Because by definition there may exist at most one path, DTIME and
DSPACE specify the actual amount of time and space units required by a deterministic
automaton.

The distinction between the deterministic and the nondeterministic versions of au-
tomata has raised the question of whether or not their generative capacity is equivalent.
In the case of finite state automata (FSAs) it holds for each language L, that if L is ac-
cepted by a nondeterministic FSA then there exists an equivalent deterministic FSA
which also accepts L.15 A corresponding result holds for Turing machines (TMs).16

In pushdown automata (PDAs), on the other hand, the deterministic and non-
deterministic versions are not equivalent in generative capacity.17 For example,
WWR (11.5.4) is accepted by a nondeterministic PDA, but not by a deterministic one.
In the case of linear bounded automata (LBAs), finally, it is not known whether the set
of languages accepted by deterministic LBAs is a proper subset of the set of languages
accepted by nondeterministic LBAs (LBA problem).

Thus, the following relations hold between deterministic and nondeterministic ver-
sions of the automata FSA, PDA, LBA, and TM:

DFSA = NFSA
DPDA ⊂ NDPA
DLBA ? NLBA
DTM = NTM

Automata in which the deterministic and nondeterministic versions are equivalent
raise the additional question of to what degree the space requirement is increased
in the transition from the nondeterministic to the deterministic version.

Given the distinction between deterministic (unambiguous) and nondeterministic
(ambiguous) LA Grammars, the automata-theoretic notions of complexity, especially

15 Rabin and Scott (1959).
16 Hopcroft and Ullman (1979), p. 164, Theorem 7.3.
17 Hopcroft and Ullman (1979), p. 113.
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NTIME and DTIME, may be applied to them. It holds in particular that

DTIME complexity of unambiguous C LAGs = C · (n − 1)

NTIME complexity of ambiguous C LAG = C · (n − 1),

where C is a constant and n is the length of the input.
The reason is that – based on the left-associative derivation structure – each ac-

cepted input of length n is analyzed in n − 1 combination steps, whereby the rule
applications of each combination step take the time required for the constant amount
of computation C. In other words, unambiguous C LAGs are of deterministic lin-
ear time complexity,18 while ambiguous C LAGs are of nondeterministic linear time
complexity.

From a theoretical point of view, the applicability of DTIME and NTIME to LA
Grammar is of general interest because it facilitates the transfer of results and open
questions between automata theory and LA Grammar. For example, the question of
whether the class of C LAGs is a proper subset of the class of B LAGs may be shown
to be equivalent to the LBA problem, i.e., the open question of whether or not DLBA
is properly contained in NLBA (cf. also Sect. 12.2).

From a practical point of view, however, the automata-theoretic complexity mea-
sures have the disadvantage that DTIME applies only to unambiguous LA Grammars
and NTIME only to ambiguous ones. Furthermore, the notion of NTIME does not
specify the actual amount of computation required to analyze arbitrary new input, but
only the amount of computation needed to verify a known result.

In order to employ a realistic method of measuring complexity, which moreover can
be applied uniformly to ambiguous and nonambiguous grammars alike, the following
complexity analysis of C LAGs will be specified in terms of the total number of rule
applications (relative to the length of the input) required to analyze arbitrary new
input in the worst case. In LA Grammar, this grammar-based method of measuring
complexity is as simple as it is natural.

11.5 Subhierarchy of C1, C2, and C3 LAGs

Compared to the A and B LAGs, the C LAGs constitute the most restricted class
of LAGs, generating the smallest LA class of languages. However, compared to the
context-free languages (which are properly contained in the C languages), the class
of C languages is quite large. It is therefore theoretically interesting and practically
useful to differentiate the C LAGs further into subclasses by defining a subhierar-
chy.

Because the complexity of C LAGs is measured by the number of rule applica-
tions, and because the number of rule applications depends solely on the ambiguity

18 Strictly speaking, unambiguous C LAGs have a complexity even better (i.e., lower) than
deterministic linear time, namely real time.
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structure, it is natural to define subclasses of C LAGs in terms of different degrees of
ambiguity. These subclasses are called the C1, C2, and C3 LAGs, whereby increasing
degrees of ambiguity are reflected in increasing degrees of complexity.

The subclass with the lowest complexity and the lowest generative capacity are the
C1 LAGs. A C LAG is a C1 LAG if it is not recursively ambiguous. The class of C1
languages parses in linear time and contains all deterministic context-free languages
which can be recognized by a DPDA without ε-moves, plus context-free languages
with −recursive ambiguities, e.g., akbkcmdm ∪ akbmcmdk, as well as many context-
sensitive languages, e.g., akbkck, akbkckdkek, {akbkck}∗, Lsquare, Lk

hast, a2i
, akbmck·m,

and ai!, whereby the last one is not even an index language.19

Another example of an unambiguous context-sensitive C1 LAGs is the following
definition for a2i =def {ai | i is a positive power of 2}:

11.5.1 C1 LAG FOR CONTEXT-SENSITIVE a2i

LX =def {[a (a)]}
STS =def {[(a) {r1}]}
r1: (a) (a) ⇒ (aa) {r2}
r2: (aX) (a) ⇒ (Xbb) {r2, r3}
r3: (bX) (a) ⇒ (Xaa) {r2, r3}
STF =def {[(aa) rp1], [(bXb) rp2], [(aXa) rp3]}.

This C1 LAG is unambiguous because r1 applies only once and r2 and r3 have in-
compatible input conditions. A comparison with corresponding PS Grammars for a2i

illustrates the formal and conceptual simplicity of LA Grammar.20

A C1 LAG with a +global, −recursive ambiguity is 11.5.2 for the context-free
language akbkcmdm ∪ akbmcmdk. In PS Grammar, this language is called inherently
ambiguous because there does not exist an unambiguous PS Grammar for it.21

11.5.2 C1 LAG FOR AMBIGUOUS akbkcmdm ∪ akbmcmdk

LX =def {[a (a)], [b (b)], [c (c)], [d (d)]}
STS =def {[(a) {r1, r2, r5}]}
r1: (X) (a) ⇒ (a X){r1, r2, r5}
r2: (a X) (b) ⇒ (X) {r2, r3}
r3: (X) (c) ⇒ (c X){r3, r4}

19 A C1 LAG for akbkcmdm ∪ akbmcmdk is defined in 11.5.2, for Lsquare and Lk
hast in Stubert

(1993), pp. 16 and 12, for akbkckdkek in CoL, p. 233, for akbmck·m in TCS, p. 296, and for
a2i

in 11.5.1. A C1 LAG for ai! is sketched in TCS, p. 296, footnote 13.
20 Hopcroft and Ullman (1979) present the canonical context-sensitive PS Grammar of a2i

on
p. 224, and a version as an unrestricted PS Grammar on p. 220.

21 Cf. Hopcroft and Ullman (1979), pp. 99–103.
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r4: (c X) (d) ⇒ (X) {r4}
r5: (X) (b) ⇒ (b X){r5, r6}
r6: (b X) (c) ⇒ (X) {r6, r7}
r7: (a X) (d) ⇒ (X) {r7}
STF =def {[ε rp4], [ε rp7]}

This C1 LAG contains a syntactic ambiguity in accordance with definition 11.3.4:
the rule package rp1 contains the input compatible rules r2 and r5. Nevertheless, the
grammar parses in linear time because the ambiguous continuations are not part of a
recursion: rp2 and rp5 do not contain r1. In the worst case, e.g., aabbccdd, the grammar
generates two analyses based on two parallel time-linear paths which begin after the
initial a-sequence.22

The kind of C LAG with the second lowest complexity and the second lowest gen-
erative capacity are the C2 LAGs. A C LAG is a C2 LAG if (i) it generates +recursive
ambiguities and (ii) the ambiguities are restricted by the single return principle.

11.5.3 THE SINGLE RETURN PRINCIPLE (SRP)

A +recursive ambiguity is single return if exactly one of the parallel paths
returns to the state resulting in the ambiguity in question.

The class of C2 languages parses in polynomial time and contains certain nondeter-
ministic context-free languages like WWR and L∞

hast, plus context-sensitive languages
like WW, Wk≥3, {WWW}∗, and W1W2WR

1 WR
2 .23

An SR-recursive ambiguity is illustrated by the following C2 LAG for WWR. As
explained in Sect. 8.3, this language consists of an arbitrarily long sequence W of
arbitrary words, followed by the inverse of this sequence WR.

11.5.4 C2 LAG FOR CONTEXT-FREE WWR

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }
STS =def {[(segc) {r1, r2}]}, where segc ∈ {a,b, c,d, . . . }
r1: (X) (segc) ⇒ (segc X) {r1, r2}
r2: (segc X) (segc) ⇒ (X) {r2}
STF =def {[ε rp2]}

Each time r1 has been applied successfully, r1 and r2 are attempted in the next compo-
sition. As soon, however, as r2 is successful, the derivation cannot return to r1 because
r1 is not listed in the rule package of r2. Therefore, only one branch of the ambiguity
(i.e., the one resulting from repeated applications of r1) can return into the recursion.

22 An explicit derivation is given in CoL, pp. 154f.
23 A C2 LAG for WWR is defined in 11.5.4, for L∞

hast in Stubert 1993, p. 16, for WW in 11.5.6,
for WWW in CoL, p. 215, for Wk≥3 in CoL, p. 216, and for W1W2WR

1 WR
2 in 11.5.7.
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The worst case in parsing WWR is inputs consisting of an even number of the same
word. This is illustrated below with the input a a a a a a:

11.5.5 DERIVATION STRUCTURE OF THE WORST CASE IN WWR

rules: applications:

2 a$a
122 aa$aa
11222 aaa$aaa
11122 aaaa$aa
11112 aaaaa$a
11111 aaaaaa$

The unmarked middle of the intermediate strings generated in the course of the deriva-
tion is indicated by $. Of the six hypotheses established in the course of the left-
associative analysis, the first two are invalidated by the fact that the input string con-
tinues, the third hypothesis correctly corresponds to the input a a a a a a, and the
remaining three hypotheses are invalidated by the fact that the input does not provide
any more words.

A C2 LAG for a context-sensitive language is illustrated by the following definition:

11.5.6 C2 LAG FOR CONTEXT-SENSITIVE WW

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }
STS =def {[(segc) {r1, r2}]}, where segc ∈ {a,b, c,d, . . . }
r1: (X) (segc) ⇒ (X segc) {r1, r2}
r2: (segc X) (segc) ⇒ (X) {r2}
STF =def {[ε rp2]}

This grammar resembles 11.5.4 except for the result category of r1: in context-
sensitive WW, r1 defines the category pattern (X segc), while in context-free WWR,
r1 defines the category pattern (segc X). The worst case for context-sensitive WW and
context-free WWR is the same. The respective C2 LAGs are both SR-ambiguous, and
are both of n2 complexity. The n2 increase of readings in the analysis of the worst case
of WWR and WW is clearly visible in 11.5.5.

A C2 LAG of n3 complexity is the nondeterministic context-sensitive language
W1W2WR

1 WR
2 devised by Stubert.

11.5.7 C2 LAG FOR CONTEXT-SENSITIVE W1W2WR
1 WR

2

LX =def {[a (a)], [b (b)]}
STS =def {[(segc) {r1a}], [(segc) {r1b}]}, where segc, segd ∈ {a,b}
r1a : (segc) (segd ) ⇒ (# segc segd ) {r2, r3}
r1b: (segc) (segd ) ⇒ (segd # segc) {r3, r4}
r2: (X) (segc) ⇒ (X segc) {r2, r3}
r3: (X) (segc) ⇒ (segc X) {r3, r4}
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r4: (X segc) (segc) ⇒ (X) {r4, r5}
r5: (segc X #) (segc) ⇒ (X) {r6}
r6: (segc X) (segc) ⇒ (X) {r6}
STF =def {[ε rp5], [ε rp6]}

The exact complexity of this language is 1
8 n3 + 1

4 n2 + 1
2 n. The degree of polynomial

complexity depends apparently on the maximal number of SR-recursive ambiguities
in a derivation. Thus, a C2 LAG with one SR-recursive ambiguity can be parsed in n2,
a C2 LAG with two SR-recursive ambiguities can be parsed in n3, etc.

The subclass with the highest complexity and generative capacity is the C3 LAGs.
A C LAG is a C3 LAG if it generates unrestricted +recursive ambiguities. The class
of C3 languages parses in exponential time and contains the deterministic context-
free language Lno, the hardest context-free language HCFL, plus context-sensitive lan-
guages like SubsetSum and SAT, which are NP-complete.24

A language known to be inherently complex, requiring exponential time irrespective
of the algorithm used, is SubsetSum. Its expressions y#a1#a2#a3# . . .#an# are defined
such that y,a1,a2, . . . ,an are all binary strings containing the same number of digits.
Furthermore, when viewed as binary numbers presenting the least significant digit
first, y is equal to the sum of a subset of the ai .

11.5.8 C3 LAG FOR SUBSETSUM

LX =def {[0 (0)], [1 (1)], [# (#)]}
STS =def {[(segc) {r1, r2}]}, where segc ∈ {0,1}

segc ∈ {0, 1}
r1: (X) (segc) ⇒ (segc X) {r1, r2}
r2: (X) (#) ⇒ (# X) {r3, r4, r6, r7, r12, r14}
r3: (X segc) (segc) ⇒ (0 X) {r3, r4, r6, r7}
r4: (X #) (#) ⇒ (# X) {r3, r4, r6, r7, r12, r14}
r5: (X segc) (segc) ⇒ (0 X) {r5, r6, r7, r11}
r6: (X 1) (0) ⇒ (1 X) {r5, r6, r7, r11}
r7: (X 0) (1) ⇒ (1 X) {r8, r9, r10}
r8: (X segc) (segc) ⇒ (1 X) {r8, r9, r10}
r9: (X 1) (0) ⇒ (0 X) {r5, r6, r7, r11}
r10: (X 0) (1) ⇒ (0 X) {r8, r9, r10}
r11: (X #) (#) ⇒ (# X) {r3, r4, r6, r7, r12, r14}
r12: (X 0) (segc) ⇒ (0 X) {r4, r12, r14}
r13: (X 0) (segc) ⇒ (0 X) {r11, r13, r14}
r14: (X 1) (segc) ⇒ (1 X) {r11, r13, r14}
STF =def {[(X) rp4]}

24 A C3 LAG for Lno is defined in 12.3.3, for HCFL in Stubert (1993), p. 16, for SubsetSum
in 11.5.8, and for SAT in TCS, footnote 19.
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This C3 LAG (devised by Applegate) copies y into the category. Then the +recursive
ambiguity arises by nondeterministically either subtracting or not subtracting each ai

from y. The grammar is of exponential complexity and enters an accepting state if the
result of the subtraction is zero.

In conclusion, let us summarize the different restrictions on LA Grammar, the re-
sulting hierarchy of LA Grammar classes, the associated classes of languages, and
their complexity. The LA hierarchy resembles the PS hierarchy (8.1.2) insofar as the
subclasses of the LAGs and their languages are defined in terms of increasing restric-
tions on the rule system.

The language class of the C1 LAGs is a subset of the C2 languages because the
−recursive ambiguity structure of the C1 LAGs is more restricted than the SR-recur-
sive ambiguities of the C2 LAGs (11.5.3). The language class of the C2 LAGs is
a subset of the C3 languages because the SR-recursive ambiguity structure of the
C2 LAGs is more restricted than the +recursive ambiguities of the C3 LAGs. The
language class of the C3 LAGs is a subset of the B languages because the category
patterns of the C LAGs are more restricted than those of the B LAGs. The language
class of the B LAGs is a subset of the A languages because the categories assigned by
B LAGs are restricted in length while those of the A LAGs are not.

The restrictions on LA Grammar apply directly to the two complexity parameters
amount and number of rule applications (11.2.1).

11.5.9 KINDS OF RESTRICTION IN LA GRAMMAR

0. LA type A: no restriction
1. LA type B: The length of the categories of intermediate expressions is limited by

k · n, where k is a constant and n is the length of the input (R1.1, amount).
2. LA type C3: The form of the category patterns results in a constant limit on the

amount of computation required by the categorial operations (R1.2, amount).
3. LA type C2: LA type C3 and the grammar is at most SR-recursively ambiguous

(R2, number).
4. LA type C1: LA type C3 and the grammar is at most −recursively ambiguous

(R2, number).

The amount and number parameters are controlled via (1) the length of categories
assigned to intermediate expressions, (2) the form of the category patterns in the rules,
(3) the possible reapplication of rules as defined by the rule packages, and (4) the input
compatibility of rules in the same rule package.

The LA Grammar hierarchy is summarized in 11.5.10. Like the PS Grammar hierar-
chy 8.1.2, it is based on the structural relation between restrictions on the rule system,
kinds of grammar, classes of languages, and degrees of complexity.
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11.5.10 LA GRAMMAR HIERARCHY OF FORMAL LANGUAGES

Of the five different classes of LA Grammar, only the class of B languages occurs also
in the PS Grammar hierarchy, namely as the class of context-sensitive languages. The
class of A languages, on the other hand, is properly contained in the class of recur-
sively enumerable languages generated by unrestricted PS Grammars. The classes of
C1, C2 and C3 languages have no counterpart in the PS Grammar hierarchy. However,
the PS Grammar class of regular languages is properly contained in the class of C1
languages, while the class of context-free languages is properly contained in the class
of C3 languages.

Furthermore, compared to the restrictions on PS Grammar, which apply only to the
form of the rules, the restrictions on LA Grammar apply to the rule system as a whole.
This is because in LA Grammar the application of rules is handled explicitly in terms
of the category patterns and rule packages, whereas in PS Grammar it is handled
implicitly in terms of the variables contained in the rewrite rules.

Exercises

Section 11.1
1. Explain the notions of total recursive function and partial recursive function.
2. What is the formal characterization of the class of recursive languages in the

hierarchy of PS Grammar?
3. What is the generative capacity of LA Grammar in its basic unrestricted form?
4. Explain the proofs in 11.1.2 and 11.1.3.
5. Describe the difference in generative capacity of unrestricted PS Grammar and

unrestricted LA Grammar.

Section 11.2
1. What are possible structural restrictions on LA Grammar?
2. Explain the grammar classes of A LAGs, B LAGs, and C LAGs.
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3. What is the difference between a constant and a nonconstant categorial opera-
tion?

4. Describe the reconstruction of the PS Grammar hierarchy in LA Grammar.
5. Is there a class of LA Grammar that generates the recursively enumerable lan-

guages?
6. Is there a class of PS Grammar that generates the recursive languages?
7. Is there a class of PS Grammar that generates the C languages?

Section 11.3
1. Explain the notions of ±global ambiguities. What is their relation to the notions

of ±deterministic derivations in automata theory and the notion of ambiguity in
PS Grammar.

2. What determines the number of rule applications in an LA derivation?
3. Describe three different relations between the input conditions of LA Grammar

rules.
4. What is the definition of ambiguous and unambiguous LA Grammars?
5. Explain the notions of ±recursive ambiguity in LA Grammar.
6. Define the rule packages of a −recursively ambiguous LA Grammar with seven

rules such that it is maximally ambiguous. How many readings are derived by
this grammar after 4, 5, 6, 7, 8, and 9 combination steps, respectively?

Section 11.4
1. Explain the complexity parameters of LA Grammar.
2. How is the elementary operation of C LAGs defined?
3. Compare Earley’s primitive operation for computing the complexity of his algo-

rithm for context-free PS Grammars with that of the C LAGs.
4. How does Earley compute the amount and number parameters of context-free PS

Grammar?
5. Name four notions of complexity in automata theory and explain them.
6. Explain the relation between the deterministic and nondeterministic versions of

abstract automata.
7. Explain the application of the notions DTIME and NTIME to the C LAGs. What

is the alternative?

Section 11.5
1. Describe the subhierarchy of the C1, C2, and C3 LAGs. What is the connection

between ambiguity and complexity?
2. Define a C1 LAG for akbkcmdm ∪ akbmckdm, and explain how this grammar

works. Is it ambiguous? What is its complexity?
3. Explain the single return principle.
4. Compare the handling of WW and WWR in PS Grammar and LA Grammar.
5. Describe the well-formed expressions of SubsetSum, and explain why this lan-

guage is inherently complex.
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6. Explain the hierarchy of LA Grammar.
7. Describe the relation between PS Grammar and the nativist theory of language,

on the one hand, and between LA Grammar and the SLIM theory, on the other.
Would it be possible to use a PS Grammar as the syntactic component of the
SLIM theory? Would it be possible to use an LA Grammar as the syntactic com-
ponent of the nativist theory?



12. LA and PS Hierarchies in Comparison

Having presented two nonequivalent formalisms of grammar,1 each with its own fully
developed hierarchy of language and complexity classes, we return in this chapter to
the formal properties of natural language. Section 12.1 compares the complexity of the
LA and PS Grammar language classes. Section 12.2 describes the inclusion relations
between language classes in the PS and the LA hierarchy, respectively. Section 12.3
defines a context-free language which is a C3 language. Section 12.4 describes the
orthogonal relation between the context-free languages and the classes of C languages.
Section 12.5 investigates ambiguity in natural language, and concludes that the natural
languages are in the class of C1 LAGs, thus parsing in linear time.

12.1 Language Classes of LA and PS Grammar

A grammar formalism for natural language is like a suit. If the formalism chosen is too
small – for example as a regular (type 3) PS Grammar (8.2.3) – there are phenomena
which it cannot handle. If it is too large – for example a context-sensitive (type 1)
PS Grammar – the characteristic structures of natural language will disappear in a
formalism which allows one to describe the most complicated artificial structures as
easily as the genuinely natural ones.

Furthermore, the ‘larger’ a formalism, the more ‘expensive’ it is in terms of math-
ematical complexity. Computationally, these costs appear as the amounts of time and
memory required for the parsing of language expressions.

A formalism may not only be simply too small or too large for the description of
natural language, but also too small and too large at the same time – like a pair of
borrowed pants which turn out too short and too wide. For example, the formalism
of context-free PS Grammar is too small for the description of natural language, as
indicated by the introduction of transformations and similar extensions. At the same
time it is too large, as shown by context-free languages like HCFL,2 the structures of
which have no counterpart in natural language.

1 Namely PS Grammar in Chaps. 8 and 9, and LA Grammar in Chaps. 10 and 11.
2 Hardest Context-Free Language, Greibach (1973).
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In principle, there is no theoretical or practical reason why it should not be possi-
ble to tailor a formalism of low generative capacity and complexity which really fits
natural language. It is just that, despite great efforts, no such subformalism could be
found within PS Grammar.

Alternative elementary formalisms are C Grammar and LA Grammar. C Grammar,
however, has no fully developed hierarchy with different language classes and de-
grees of complexity. On the contrary, bidirectional C Grammar is weakly equivalent
to context-free PS Grammar (Sect. 9.2).

Therefore, the only language hierarchy orthogonal to that of PS Grammar is that
of LA Grammar. Regarding the four basicdegrees of complexity (8.2.1), the language
classes of LA and PS Grammar compare as follows:

12.1.1 COMPLEXITY DEGREES OF THE LA AND PS HIERARCHY

LA Grammar PS Grammar

undecidable – recursively enumerable languages

decidable A languages –
exponential B languages context-sensitive languages
exponential C3 languages

polynomial C2 languages context-free languages

linear C1 languages regular languages

The nonequivalence of the elementary formalisms of LA and PS Grammar is shown
by languages which are in the same class in PS Grammar, but in different classes in
LA Grammar, and vice versa. For example, akbk and WWR are in the same class
in PS Grammar (i.e., context-free), but in different classes in LA Grammar: akbk

is a C1 LAG parsing in linear time, while WWR is a C2 LAG parsing in n2. Con-
versely, akbk and akbkck are in the same class in LA Grammar (i.e., C1 LAGs), but
in different classes in PS Grammar: akbk is context-free, while akbkck is context-
sensitive.

That a language like akbkck can be classified into two different language classes
(i.e., context-sensitive vs. C1) with different degrees of complexity (i.e., exponential
vs. linear) depends on the distinction between the inherent complexity of an individual
language and the complexity of its class.

The classification of akbkck as context-sensitive in PS Grammar is not because this
language is inherently complex, but rather because no lower subclass of PS Grammar
happens to fit its structure. It is therefore possible to define an alternative formalism
which classifies akbkck in a class of linear complexity.
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Furthermore, the lower language classes are defined as subsets of the higher lan-
guage classes. A language like akbk, for example, is called context-free in PS Gram-
mar because this is the smallest language class containing it. Nominally, however,
akbk is also a context-sensitive language, because the class of context-free languages
is contained in the context-sensitive class. Therefore, a statement like “akbkck is
a context-sensitive language which in LA Grammar is a C1 LAG parsing in lin-
ear time” is no contradiction: because the class of C1 languages is a subset of the
class of B languages, the C1 LAGs are nominally also B LAGs (and thus context-
sensitive).

12.2 Subset Relations in the Two Hierarchies

A language class X is a subset of another language class Y (formally X ⊆ Y) if all
languages in X are also languages in Y. A language class X is a proper subset of
another language class Y (formally X ⊆ Y) if X is a subset of Y and in addition there
is at least one language in Y which is not an element of X.

The following subset relations hold for the language classes of the PS hierarchy:

12.2.1 SUBSET RELATIONS IN THE PS HIERARCHY

regular lang. ⊂ context-free lang. ⊂ context-sensitive lang. ⊂ rec. enum. languages

These subset relations follow from decreasing restrictions on the rewrite rules of PS
Grammar (Sect. 8.2) and are proper3 subset relations.

The following subset relations hold for the language classes in the LA hierarchy:

12.2.2 SUBSET RELATIONS IN THE LA HIERARCHY

C1 languages ⊆ C2 languages ⊆ C3 languages ⊆ B languages ⊂ A languages

These subset relations follow likewise from decreasing restrictions. However, while
the B languages are a proper subset of the A languages,4 the proper inclusion of the
other classes can only be surmised. In particular, the question of whether the class of
C2 languages is a proper subset of the C3 languages corresponds to an unsolved prob-
lem of classic automata theory, namely whether P ⊂ NP or P = NP (Sect. 11.4).

The language class NP contains all languages which can be recognized in nonde-
terministic polynomial time, while P contains all languages which can be recognized
in deterministic polynomial time.

3 Hierarchy lemma, Hopcroft and Ullman (1979) , p. 228.
4 See Hopcroft and Ullman (1979) , p. 228, Theorem 9.8. The A LAGs generate the recur-

sive languages while the B LAGs generate the context-sensitive languages, as shown in
Sects. 11.1 and 11.2.



234 12. LA and PS Hierarchies in Comparison

The languages recognizable in deterministic polynomial time form a natural and im-
portant class, the class

⋃
i≥1 DTIME(ni), which we denote by P . It is an intuitively

appealing notion that P is the class of problems that can be solved efficiently. Al-
though one might quibble that an n57 step algorithm is not very efficient, in practice
we find that problems in P usually have low-degree polynomial time solutions.

Hopcroft and Ullman (1979), p. 320

A language L is called NP-complete if (i) all languages in NP can be reduced to
L in deterministic polynomial time and (ii) L is in NP . An NP-complete language is
designed to represent the worst case of nondeterministic polynomial complexity.

The classic, historically first, example of an NP-complete language is SAT, the
problem of Boolean SATisfiability.5 Consider the following Boolean expression:

12.2.3 A WELL-FORMED EXPRESSION IN 3SAT

(x ∨ ȳ ∨ z̄) ∧ (y ∨ z ∨ u) ∧ (x ∨ z ∨ ū) ∧ (x̄ ∨ y ∨ u)

The sign ∨ stands for the logical or (disjunction), the sign ∧ stands for the logical and
(conjunction), the letters represent variables for propositions, and the horizontal bar
over some of the variables, e.g., z̄, stands for negation. 3SAT is a slight simplification
of SAT because 3SAT is restricted to conjunctions in which each conjunct consists of
a disjunction containing three variables.

The problem of satisfying this expressions is to find an assignment for the variables
which would make the expression true – if such an assignment exists. This problem is
inherently complex because the analysis has to keep track of potentially 2n different
assignments. For example, the first variable x may be assigned the values 1 (true) or 0
(false). When the second variable y is encountered, four assignments must be distin-
guished, namely (x = 1, y = 1), (x = 1, y = 0), (x = 0, y = 1) and (x = 0, y = 0). In
other words, each time a new variable is encountered, the number of possible assign-
ments is doubled.

Another example of an NP-complete language is the already familiar Subset Sum.
Like 3SAT, Subset Sum is a C3 language, as shown by the definition of the C3 LAG
in 11.5.8. Thus, the class of C3 languages contains NP-complete languages. Fur-
thermore, the class of C3 languages is obviously in NP because C LAGs verify by
definition in nondeterministic linear time (Sect. 11.4) – and thus a fortiori in nonde-
terministic polynomial time.

The C2 languages, on the other hand, are designed to parse in deterministic polyno-
mial time, for which reason they are contained in P . The assumption that the class of
C2 languages is not a proper subset of the class of C3 languages would imply that

the class of C2 languages = the class of C3 languages.

5 Hopcroft and Ullman (1979), pp. 324f.
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This would mean in turn that there exists a C2 LAG for Subset Sum, for example.
Because all NP languages can be reduced in deterministic polynomial time to Subset
Sum, it would follow that

P = NP .

The equivalence of P and NP is considered improbable, however, which strengthens
the guess that the C2 languages are a proper subset of the C3 languages.6

Another open question is whether the class of C3 languages is a proper subset of the
class of B languages. Here, one may speculate using the NP-completeness of the C3
LAGs again. It is known that the recognition of context-sensitive languages (CS-re-
cognition) is PSPACE-complete (Hopcroft and Ullman (1979) , pp. 346f.). Because it
is improbable7 that a PSPACE-complete problem is in NP , it is also improbable that
the class of C languages is not a proper subset of the set of B languages.

12.3 Nonequivalence of the LA and PS Hierarchy

A language which is context-free in PS Grammar, but a C3 language in LA Grammar,
is Lno (or noise language) devised by Applegate. Lno generates expressions which
consist of 0 and 1, and which have the structure W′#WR. The symbol # separates W’
and WR, WR is the mirror image of W, and W’ differs from W by containing an arbitrary
number of additional 0s and 1s. These additional words in W’ are indistinguishable
from those which have a counterpart in WR and thus function as noise.

A context-free PS Grammar for this language is defined as follows:

12.3.1 PS GRAMMAR OF Lno

S → 1S1 S → 1S S → #
S → 0S0 S → 0S

The rules in the left column generate corresponding words preceding and following #,
while the rules in the middle column generate only noise words in W’.

Traditional parsers for context-free languages like the Earley or the CYK algorithm
have no difficulty in analyzing Lno in n3. This is because the parser utilizes the basic
inverse pair structure of context-free languages. The following PS Grammar deriva-
tion shows the corresponding states produced by the Earley algorithm (9.3.4):

6 Assuming that the proper inclusion of C2 ⊂ C3 could be shown directly (for example, by
means of a pumping lemma for C2 languages), then this would imply P ⊂ NP only if it
can be shown that C2 = P , which is improbable.

7 Not only is a PSPACE-complete problem not likely to be in P , it is also not likely
to be in NP . Hence the property whose existence is PSPACE-complete probably
cannot even be verified in polynomial time using a polynomial length ‘guess’.

Garey and Johnson (1979), p. 171
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12.3.2 PS GRAMMAR DERIVATION OF 10010#101 IN Lno

The Earley algorithm generates only two states for each terminal symbol preceding #
in Lno, for example ‘1.S1’ and ‘1.S’. Thus, if # is preceded by k terminal symbols in
the input chain, then the algorithm will produce 2k states by the time # is reached.8

In contrast, the categorial operations of the C LAGs reflect the structure of a double-
ended queue. This structure is well suited for repetitions of arbitrary number, whereby
the repetitions may be modified, e.g., inverted, doubled, halved, etc.

Parsers in general and C LAGs in particular are inefficient if the input contains an
unknown number of words such that it can only be determined at the end of the analy-
sis whether later words must correspond to earlier words or not. This is the character-
istic property of NP-hard languages, i.e., languages which require N ondeterministic
Polynomial time for verification and exponential time for analysis.

For LA Grammar, context-free languages like HCFL9 and Lno, on the one hand, and
NP-complete context-sensitive languages like 3SAT and Subset Sum, on the other,
are structurally similar. These four languages have in common that in the first half of
the input there may occur arbitrarily many words of which it is not known whether or
not they are needed as counterparts in the second half.10

8 Because Lno is a deterministic context-free language, it can be parsed in linear time in PS
Grammar. Stubert (1993), p. 71, Lemma 5.1.

9 HCFL parses in polynomial time in PS Grammar for several reasons:

1. Context-free PS Grammars use a different method of measuring complexity than C
LAGs. More specifically, the n3 time complexity for context-free languages in general
depends crucially on the use of multi-tape Turing machines. The complexity of C LAGs,
on the other hand, is determined on the basis of the grammars directly.

2. In contrast to abstract automata, no ε-moves are allowed in C LAGs.

10 The C LAG complexity of context-free Lno is the same as that of the context-sensitive
language L3

no, which generates expressions of the structure W’#W#W”, whereby W’ and
W” are noisy versions of W. The LA Grammar of Lno is in a higher complexity class than
the corresponding PS Grammar because C LAGs are not designed to utilize the fixed inverse
pair structure of the context-free languages, and because ε-moves are not permitted.
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The only way a C LAG can analyze Lno is by assigning two interpretations to each
word preceding #, one as a ‘real’ word and one as a ‘noise’ word. This results in an
exponential number of readings for the input chain preceding #, each reading with
its own category. For example, if the input is 10010#. . . , then one reading has the
category (10010), representing the hypothesis that all words preceding # are ‘real’.
Another reading of this input has the category (1001), representing the hypothesis
that the last word preceding # is noise, etc.

The following C3 LAG generates these hypotheses systematically from left to right:

12.3.3 C3 LAG FOR Lno

LX =def {[0 (0)], [1 (1)], [# (#)]}
STS =def {[(segc) {r1, r2, r3, r4, r5}]}, where segc, segd ∈ {0,1}.
r1: (segc)(segd ) ⇒ ε {r1, r2, r3, r4, r5}
r2: (segc)(segd ) ⇒ (segd ) {r1, r2, r3, r4, r5}
r3: (X)(segc) ⇒ (X) {r1 r2, r3, r4, r5}
r4: (X)(segc) ⇒ (segc X) {r1 r2, r3, r4, r5}
r5: (X)(#) ⇒ (X) {r6}
r6: (segc X)(segc) ⇒ (X) {r6}
STF =def {[ε rp6]}

The +recursive ambiguity of this C3 LAG arises because r3 and r4, for example,
(i) have compatible (in fact identical) input conditions, (ii) co-occur in rule packages,
and (iii) are reapplied in the same analysis path. Rule r3 ignores the category of the
next word, thus treating it as noise. Rule r4 attaches the category of the next word at the
beginning of the new sentence start category, thus requiring that it have a counterpart
in the second half of the input.

The C3 LAG for Lno is similar to the C3 LAG for NP-complete Subset Sum
(11.5.8), where each ai may be interpreted either as noise or as a ‘real’ subset. The
C3 LAG for Subset Sum is context-sensitive, however, because some rules (e.g., r5)
check the beginning and others (e.g., r4) the end of the sentence start category. The
C3 LAG for Lno is context-free because its categorial operations all check only the
beginnings of sentence start categories.

12.4 Comparing the Lower LA and PS Classes

Context-free PS Grammar has been widely used because it provides the greatest
amount of generative capacity within the PS Grammar hierarchy which is still compu-
tationally tractable. There is general agreement in linguistics, however, that context-
free PS Grammar does not properly fit the structures characteristic of natural language.
The same holds for computer science, where context-free PS Grammar has likewise
turned out to be suboptimal for describing the structures of programming languages.



238 12. LA and PS Hierarchies in Comparison

It is no secret that context-free grammars are only a first order approximation to
the various mechanisms used for specifying the syntax of modern programming lan-
guages.11

Ginsburg (1980), p. 7.

Therefore, there has long been a need for an alternative to better describe the syn-
tax of natural and programming languages. Most attempts to arrive at new language
classes have consisted in conservative extensions, however, which follow context-free
PS Grammar too closely. They are based on adding certain mechanisms and result in
additional language classes which fit right into the subset relations of the PS hierarchy.
For example, the context-free languages form a proper subset of the tree-adjoining
languages (TALs),12 which form a proper subset of the index languages,13 which in
turn form a proper subset of the context-sensitive languages.

More than five decades of PS Grammar tradition and the long absence of a substan-
tial alternative are no valid reasons, however, to regard the PS Grammar hierarchy of
formal languages and its extensions as particularly ‘natural’. After all, these language
classes are no more than the result of certain restrictions on a certain formalism.

The context-free languages, for example, are defined in terms of restrictions which
are suggested only by the formalism of rewrite rules (8.1.2). Similarly, the C1, C2,
and C3 languages are defined in terms of restrictions which are suggested only by
the formalism of LA Grammar (11.5.9). As a result of these different restrictions, the
language hierarchies of PS and LA Grammar are orthogonal to each other:

12.4.1 ORTHOGONAL RELATION BETWEEN C AND CF LANGUAGES

11 See also Harrison (1978), pp. 219f., in the same vein.
12 Joshi et al. (1975, 1991).
13 Hopcroft and Ullman (1979), pp. 389f. Hayashi (1973) proved a pumping lemma for index

languages.
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From a pretheoretical point of view, one would be inclined to classify the lan-
guage akbk with akbkck, akbkckdk, etc., on the one hand, and WWR with WW on
the other. It is therefore surprising to the untutored that the PS hierarchy puts akbk

and WWR into one class (context-free), but akbkck, akbkckdk, etc., with WW into an-
other class (context-sensitive). The LA hierarchy is intuitively more natural because
there ak, akbk, akbkck, akbkckdk, etc. are classified together as linear C1 languages,
while WWR and WW, WWRW and WWW, etc. are classified as polynomial C2 lan-
guages.

If the distinction between deterministic context-free languages Ldcf and nondeter-
ministic context-free languages Lcf is made, the orthogonal relation between the PS
and the LA hierarchy may be seen even more clearly (Stubert 1993, p. 72):

12.4.2 ORTHOGONAL Ldcf , Lcf , C1, C2, AND C3 CLASSIFICATIONS

The class of Ldcf cuts across the three subclasses of C in the same way as Lcf .
The alternative classifications of LA Grammar provide a new perspective on the

theory of formal languages. Furthermore, because the PS Grammar hierarchy may be
reconstructed in LA Grammar (Sect. 11.2), open questions of classic automata theory
may be transferred directly to LA Grammar (Sect. 12.2).

12.5 Linear Complexity of Natural Language

A context-sensitive language which is not a C language would prove the proper inclu-
sion of the C languages in the B languages (12.2.2). In such a language, the category
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length would have to grow just within the LBA definition of context-sensitive lan-
guages, but grow faster than the pattern-based categorial operations of the C LAGs
would permit. That this kind of language would be characteristic for the structure of
natural language is improbable.

If the natural languages are contained in the C LAGs, however, then the following
two questions are equivalent:

(i) How complex are the natural languages?
(ii) How ambiguous are the natural languages?

This is because the C LAG subclasses differ solely in their degrees of ambiguity.
An utterance is called ambiguous if more than one meaning2 (PoP-1, 4.3.3) may be

derived by the hearer. This may be due to a syntactic, semantic, or pragmatic ambigu-
ity. For complexity analysis – it being concerned with the combinatorial structure of
expressions – only syntactic ambiguity is relevant.

In the SLIM theory of language, a syntactic ambiguity arises if an expression is
assigned more than one structural analysis. A semantic ambiguity arises if a syn-
tactically unambiguous expression has more than one meaning1. A pragmatic am-
biguity is caused by a meaning1 having more than one use relative to a given con-
text.

12.5.1 SLIM-THEORETIC ANALYSIS OF AMBIGUITY

A syntactic ambiguity is characterized by alternative categories of the surface (here,
cata and catb), such that each categorial reading has its own meaning1 (here, semx

and semy). For example, won is syntactically ambiguous between a noun referring
to the currency of Korea and the past tense form of the verb to win. If the context
does not disambiguate between semx and semy , the syntactic ambiguity will cause
the utterance to have more than one meaning2.

A semantic ambiguity is characterized by a surface having only one syntactic anal-
ysis, but more than one meaning1. For instance, the surface perch is semantically am-
biguous, one literal meaning standing for a kind of fish, the other for a place to roost.
Syntactically, however, perch is not ambiguous because both readings are of the cat-
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egory noun.14 For internal matching, a semantic ambiguity resembles a syntactic one
insofar as in either case the expression used has more than one meaning1.

A pragmatic ambiguity consists in alternative uses of one meaning1 relative to a
given context. For example, in a context with two equally prototypical tables right
next to each other, the utterance of Put the coffee on the table would be pragmatically
ambiguous because it is not clear which of the two tables is meant by the speaker
(Sect. 5.2). In contrast to syntactic and semantic ambiguities, a pragmatic ambiguity
by its very nature cannot be disambiguated by the context.

An expression is called semantically ambiguous only if it is syntactically unam-
biguous (regarding the particular readings in question). Similarly, an utterance is
called pragmatically ambiguous only if the expression used is neither semantically
nor syntactically ambiguous. The syntactic or semantic ambiguity of a single word
form is also called a lexical ambiguity.

Only syntactic and semantic ambiguities are properties of an expression type, while
pragmatic ambiguities are properties of utterances in which tokens of expressions are
used. For determining the complexity of natural language expressions, phenomena
of pragmatic ambiguity are irrelevant. This is because pragmatic ambiguities do not
affect the type of the expression, but arise in the interaction between the semantic
interpretation of the expression and the context (Sect. 4.2).

Phenomena of semantic ambiguity are likewise irrelevant for natural language com-
plexity because semantic ambiguities are by definition associated with syntactically
unambiguous surfaces. For example, in light of the fact that the two readings of perch
have the same category, it would be superfluous to assign two different syntactic anal-
yses to the sentence The osprey is looking for a perch:

12.5.2 INCORRECT ANALYSIS OF A SEMANTIC AMBIGUITY

This analysis is misguided because it treats a semantic ambiguity needlessly as a syn-
tactic one.

The correct analysis treats the surface of the sentence in question as syntactically
unambiguous, handling the ambiguity instead semantically by assigning two different
meanings1 to perch.

14 We are ignoring here the denominal verb to perch which stands for sitting on a place to
roost.
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12.5.3 CORRECT ANALYSIS OF A SEMANTIC AMBIGUITY

Even though the syntactic derivation is unambiguous, the semantic interpretation pro-
vides two different meanings1, which in turn provide for the possibility of two dif-
ferent meanings2 in the interpretation of the sentence relative to a given context. This
method is called semantic doubling.15

Semantic doubling is based on the [2 + 1] level structure of natural communication
(Sect. 4.2). Assigning the same analyzed surface, here perchnoun, to more than one
meaning1 instantiates the surface compositional insight that it is not always necessary
to push semantic distinctions through to the level of syntax.

The use of semantic doubling is highly restricted. It may be applied only if the
readings at the semantic level are associated either with no (as in 12.5.3) or with a
systematic distinction (as in 12.5.4) at the syntactic level. Genuine syntactic ambigu-
ity, in contrast, is limited to cases in which different semantic readings are associated
with an unsystematic – and thus unpredictable – alternative of syntactic analysis.

As an example of semantic doubling in the case of a systematic alternative, con-
sider prepositional phrases. These permit generally an adnominal and an adverbial
interpretation, as shown by the following examples:

12.5.4 MULTIPLE INTERPRETATIONS OF PREPOSITIONAL PHRASES

The man saw the girl with the telescope.
Julia ate the apple on the table behind the tree in the garden.

The first example has two different meaning1 interpretations. In the adverbial reading,
the prepositional phrase with the telescope modifies the verb saw. In the adnominal
reading, the prepositional phrase modifies the girl.

The second example contains three prepositional phrases rather than one, illustrat-
ing the theoretical possibility of adding an unlimited number of prepositional phrases.
This raises the question of whether or not the number of syntactic readings should
be doubled each time a new prepositional phrase is added. The following analysis
illustrates a (mistaken) syntactic treatment of the alternative interpretations of prepo-
sitional phrases:

15 First proposed in CoL, pp. 219–232 and 239–247.
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12.5.5 RECURSIVE PSEUDO-AMBIGUITY

Based on analyses like this, natural language has been argued to be of at least expo-
nential complexity.

For the mechanism of natural communication, however, such a multiplying out of
semantic readings in the syntax has no purpose. Anything can be done inefficiently.16

A good syntactic analysis should aim at finding the absolute minimum of literal mean-
ings sufficient for handling all possible uses.

For communication, an adequate treatment of prepositional phrases requires no
more than alternative adverbial and adnominal readings on the semantic level. The
semantic doubling analysis may be illustrated as follows:

16 Even for unambiguous akbk, for example, one may easily write various ambiguous gram-
mars, raising the complexity from linear to polynomial, exponential, or even undecidable.
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12.5.6 CORRECT ANALYSIS WITH Semantic Doubling

The surface is analyzed as syntactically unambiguous.17 The semantic interpreta-
tion, however, systematically assigns to each prepositional phrase two different literal
meanings at the semantic level.

Like 12.5.3, the analysis is based on the [2 + 1] level structure of natural communi-
cation. The approach is sufficient for modeling the different meanings2 that may arise
in the interpretation relative to different contexts.

The semantic doubling analysis is more efficient and concrete than an analysis based
on multiplying out the semantic readings in the syntax. While 12.5.5 is of exponential
complexity, the alternative analysis 12.5.6 is linear. This holds for both the level of
syntax and of semantics. The number of alternative meanings1 provided by 12.5.6 for
matching the interpretation context is well below 2n.

If apparent +recursive syntactic ambiguities of natural language can all be treated
as semantic ambiguities, then −recursive ambiguities like 11.3.5 and 11.3.6 remain
as the only candidates for a syntactic treatment. Without +recursive syntactic ambi-
guities, natural languages form a subset of the class of C1 languages.

We formulate this conclusion as the empirical complexity hypothesis for natural
language syntax, called CoNSyx hypothesis for short.

12.5.7 CONSYX (COMPLEXITY OF NAT. LANG. SYNTAX) HYPOTHESIS

The natural languages are contained in the class of C1 languages and parse in
linear time.

The linear complexity assigned by CoNSyx to natural language is in agreement with
the fact that human speakers and hearers usually have no difficulty in producing and
understanding18 even complicated texts in their native language in real time. The CoN-
Syx hypothesis will be complemented in Chap. 21 by a corresponding hypothesis for
the complexity of semantics, called the CoNSem hypothesis (21.5.2).19

17 Syntactically, the prepositional phrases are categorized as (adv&adn) using the multicat
notation (see Sect. 15.2).

18 At least on the syntactic level.
19 The structural properties assigned by CoNSyx to natural language syntax may and should

be tested empirically in the continuing analysis of various different languages. Possible
counterexamples to 12.5.7 would be constructions of natural language with +recursive
syntactic ambiguities which do not allow an alternative treatment based on semantic dou-
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Exercises

Section 12.1
1. Why are the lower classes of a language hierarchy, i.e., those with comparatively

low generative capacity, especially interesting for empirical work in linguistics?
2. Describe the complexity degrees of the subclasses in the LA and PS Grammar

hierarchy.
3. How is the (non)equivalence of two language classes shown?
4. Compare the inherent complexity of akbkck and Subset Sum.
5. What properties of a language determine the language class it belongs to?
6. Explain in what sense the language hierarchies of LA and PS Grammar are or-

thogonal.

Section 12.2
1. Compare the inclusion relations in the PS and the LA hierarchy.
2. By what method is the proper inclusion of the type 3 language class in the type 2

language class and that of the type 2 language class in the type 1 language class
formally proven in PS Grammar?

3. Explain the definition of the languages classes P and NP .
4. Why is the language 3SAT inherently complex?
5. What unsolved problems of classic automata theory are related to the open ques-

tions of whether C2 ⊂ C3 and whether C3 ⊂ B?

Section 12.3
1. In which subclass of the C languages is Lno and why?
2. Write a PS and an LA Grammar for L3

no, defined as W’#W#W”, where W’ and W”
are noisy versions of W.

3. In which PS Grammar classes are Lno and L3
no, respectively?

4. In which LA Grammar classes are Lno and L3
no, respectively?

5. Compare the complexity of Lno and L3
no from the viewpoint of the PS Grammar

classification of these languages.

Section 12.4
1. What is a conservative extension of context-free PS Grammar? Give two exam-

ples and compare their respective classes.
2. Is akbkckdkekfk a TAL? What is the LA class of this language?
3. What is the structural reason that ai! is not an index language? (Consult Hopcroft

and Ullman 1979). What is the LA class of this language?
4. Describe the relation between the class of context-free languages and the class

of C languages.

bling. Given the mechanism of natural communication within the SLIM theory of language,
it seems unlikely that such constructions will be found.
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5. Why is the hierarchy of LA Grammar, including the subhierarchy of the C LAGs,
more natural than that of PS Grammar ?

6. Explain how the orthogonal relation between the LA and the PS hierarchies also
shows up in the subclasses of deterministic and nondeterministic context-free
languages.

Section 12.5
1. Why don’t the natural languages fit into the class of context-free languages?
2. Why is it likely that the natural languages are a subset of the C languages?
3. If the natural languages are in the class of C languages, what would be the only

possible cause for a higher (i.e., nonlinear) complexity degree of natural lan-
guage?

4. What are the kinds of ambiguity in natural language?
5. Which kinds of ambiguity are irrelevant for the complexity of natural language

and why?
6. Explain the method of semantic doubling and its consequence on the degree of

complexity of natural language.
7. Are there +recursive syntactic ambiguities in natural language?
8. Explain why the complexity analysis of natural language depends on the theory

of grammar, using examples 9.2.1 and 9.2.2.
9. Explain why the complexity analysis of natural language depends on the theory

of language, using the second example of 12.5.4.
10. Explain the CoNSyx hypothesis. How can it be disproven empirically?
11. What is the practical importance of the CoNSyx hypothesis?
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13. Words and Morphemes

Part I analyzed natural communication within the SLIM theory of language. Part II
presented formal language theory in terms of methodology, mathematical complexity,
and computational implementation. With this background in mind, we turn in Part III
to the morphological and syntactic analysis of natural language. This chapter begins
with the basic notions of morphology, i.e., the linguistic analysis of word forms.

Section 13.1 describes the principles of combination in morphology, namely inflec-
tion,1 derivation, and compounding, as well as the distinction between the open and
the closed word classes. Section 13.2 presents a formal definition of the notions of
morpheme and allomorph. Section 13.3 describes two special cases of allomorphy,
suppletion, and bound morphemes. Section 13.4 explains the main tasks of automatic
word form recognition, namely categorization and lemmatization. Section 13.5 de-
scribes the three basic methods of automatic word form recognition, called the word
form, the morpheme, and the allomorph methods.

13.1 Words and Word Forms

The words of a natural language are concretely realized as word forms. For example,
the English word write is realized as the word forms write, writes, wrote, written, and
writing. The grammatical well-formedness of a natural language sentence depends not
only on the choice of the words, but also on the choice of the correct word forms:

13.1.1 DIFFERENT SYNTACTIC COMPATIBILITIES OF WORD FORMS

*write
*writes
*wrote

John has written a letter.
*writing

In written English, word forms are separated by spaces. For practical purposes, this
is sufficient for distinguishing the word forms in a text. Francis and Kučera (1982)

1 For simplicity, we subsume agglutination under the term of inflection.
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define a ‘graphic’ word “as a string of continuous alphanumeric characters with space
on either side; may include hyphens and apostrophes, but no other punctuation marks.”

Theoretical linguistics, especially American structuralism, has tried to arrive at a
watertight structural definition of the notions of word and word form. To establish
word forms scientifically, for example in the description of an unknown exotic lan-
guage, the structuralists proposed using the method of distribution tests, realized as
substitution and movement tests.2

In contrast, practical work has depended on the fact that native speakers have in-
tuitively a clear notion of what the words and word forms of their language are. As
observed by SAPIR (1884–1939), aborigines who do not read or write can neverthe-
less dictate in their language word form by word form (Sapir 1921, p. 33).

In line with this insight, traditional grammar has avoided turning the scientific def-
inition of words and word forms into a major problem and concentrated instead on
the classification of what is intuitively obvious. The results are used in computational
linguistics as the theoretical and empirical basis of automatic word form recognition.

In traditional morphology, the following principles of combination are distin-
guished:

13.1.2 COMBINATION PRINCIPLES OF MORPHOLOGY

1. Inflection is the systematic variation of a word which allows it to perform dif-
ferent syntactic and semantic functions, and adapt to different syntactic environ-
ments. Examples are learn, learn/s, learn/ed, and learn/ing.

2. Derivation is the combination of a word with an affix.3 Examples are clear/ness,
clear/ly, and un/clear.

3. Compounding is the combination of two or more words into a new word form.
Examples are gas/light, hard/wood, over/indulge, and over-the-counter.

These three processes may also occur simultaneously, as in over/indulg/er/s (16.1.1).
Furthermore, these processes are productive in the sense that a new word like in-
fobahning4 may be inflected in English as a verb (we infobahn, he infobahn/s, we
infobahn/ed, . . . ), may permit derivations like infobahn/er/s, and may participate in
compounds, like pseudo-infobahn/er.

The grammarians of ancient Greece and Rome arranged inflectional word forms
into paradigms. We define a word5 abstractly as the set of concrete word forms in its
inflectional paradigm.

2 These same tests were also used in the attempt to motivate syntactic constituent structures
(8.4.6–8.4.8).

3 See the distinction between free and bound morphemes in Sect. 13.3.
4 In analogy to autobahning, coined by Americans stationed in Germany after World War II

from ‘Autobahn’ = highway.
5 Our terminology is in concord with Sinclair (1991):
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13.1.3 DEFINITION OF THE NOTION word

word =def {associated analyzed word forms6}

The base form of a word is used as its name. In English, the base form of nouns is the
nominative singular, e.g., book; of verbs it is the unmarked form of the present tense,
e.g., learn; and of adjectives it is the adnominal in the positive, e.g., slow.7

For simplicity, the following analysis of word forms is represented as ordered
triples8 consisting of the surface, the syntactic category, and the semantic represen-
tation, as in the following example:

13.1.4 EXAMPLE OF AN ANALYZED WORD FORM

[wolves (pn) wolf]

The surface wolves serves as the key for relating the analyzed word form to corre-
sponding unanalyzed surfaces occurring in texts (13.4.7). The category (pn) stands
for ‘plural noun’ and characterizes the combinatorics of the word form. The semantic
representation (meaning1 concept) named wolf applies to the word as a whole (rather
than to just the word form in question) and serves as the common link between the
different forms of the paradigm.9

Note that a word form is close to, but not identical to, the usual idea of a word.
In particular, several different word forms may all be regarded as instances of the
same word. So drive, drives, driving, drove, driven, and perhaps driver, drivers, driver’s,
drivers’, drive’s, make up ten different word forms, all related to the word drive. It is
usual in defining a word form to ignore the distinction between upper and lower case,
so SHAPE, Shape, and shape, will all be taken as instances of the same word form.

Another term for our notion of a word is lexeme (see for example Matthews 1972, 1974).
Terminologically, however, it is simpler to distinguish between word and word forms than
between lexeme and word forms (or even lexeme forms).

6 A clear distinction between the notions of word and word form is not only of theoretical,
but also of practical relevance. For example, when a text is said to consist of a ‘100 000
words’ it remains unclear whether the number is intended to refer to (i) the running word
forms (tokens), (ii) the different word forms (i.e., the types, as in a word form lexicon),
or (iii) the different words (i.e., the types, as in a base form lexicon). Depending on the
interpretation, the number in question may be regarded as small, medium, or large.

7 This holds only for English. In German, it is the adverbial in the positive which is used
as the base form for naming adjectives. This is because German adnominals inflect (for
example, langsam/er, langsam/e, langsam/es, etc.), whereas in English it is the adverbial
which has an additional suffix (for example, slow/ly).

8 Later work such as NLC and CLaTR uses the format of proplets (Sect. 3.4) instead.
9 Semantic properties of specific word forms are coded in the third position by means of sub-

scripts. For example, the German verb forms gibst and gabst have the same combinatorics
(category), but differ semantically in their respective tense values. NLC and CLaTR use the
alternative format of proplets and code such distinctions as values of the sem attribute.
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13.1.5 PARADIGM BASED ON A DISTINCTIVE CATEGORIZATION

word word forms (paradigm)

wolf =def {[wolf (sn) wolf],
[wolf’s (gn) wolf],
[wolves (pn) wolf],
[wolves’ (gn) wolf]}

The different categories in the second position of the analyzed word forms character-
ize their different combinatorial properties.10

The paradigm 13.1.5 is based on a distinctive categorization, in contradistinction
of the exhaustive categorization of traditional grammar. For reasons of computational
efficiency and linguistic concreteness (surface compositionality), a distinctive cate-
gorization takes great care to assign no more than one category (syntactic reading) per
word form surface whenever possible.

For comparison, consider the corresponding exhaustive categorization, based on the
number of places in a paradigm schema:

13.1.6 PARADIGM BASED ON AN EXHAUSTIVE CATEGORIZATION

word word forms

wolf =def {[wolf (nom sg) wolf] [wolves (nom pl) wolf]
[wolf’s (gen sg) wolf] [wolves’ (gen pl) wolf]
[wolf (dat sg) wolf] [wolves (dat pl) wolf]
[wolf (acc sg) wolf] [wolves (acc pl) wolf]}

A system of automatic word form recognition based on exhaustive categorization will
render three readings for input of the unanalyzed surface wolf, while one based on dis-
tinctive categorization will render only one. The artificial lexical ambiguities caused
by the exhaustive categorization result in an enormous increase in the number of op-
erations in syntactic parsing (Sect. 15.2).

The distinction between a word and a word form (13.1.3) applies also to noninflect-
ing words like and. That the two may seem to coincide is because in such cases the
set of word forms is the unit set.

13.1.7 ANALYSIS OF A NONINFLECTING WORD

word word form(s)

and =def {[and (cnj) and]}

10 The category (sn) stands for ‘singular noun,’ (pn) stands for ‘plural noun,’ and (gn) stands
for ‘genitive noun.’ The distinction between nongenitive singulars and plurals is important
for the choice of the determiner, e.g., every vs. all (17.1.1). Because genitives in English
serve only as prenominal modifiers, e.g., the wolf’s hunger, their number distinction need
not be coded into the syntactic category.
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The words of a natural language are traditionally divided into parts of speech. There
is, however, considerable variation among different grammarians.11 Of the various
options, the SLIM theory uses the following part of speech:

13.1.8 PARTS OF SPEECH

– verbs, e.g., walk, read, give, help, teach, . . .
– nouns, e.g., book, table, woman, messenger, arena, . . .
– adjectives, e.g., quick, good, low, . . .
– conjunctions, e.g., and, or, because, after, . . .
– prepositions, e.g., in, on, over, under, before, . . .
– determiners, e.g., a, the, every, some, all, any, . . .
– particles, e.g., only, already, just. . .

The first three parts of speech form what are called the open classes of words, whereas
the remaining parts of speech constitute the closed classes.

13.1.9 OPEN AND CLOSED CLASSES

The open classes comprise tens of thousand elements, while the closed classes contain
only a few hundred words.

In the open classes, the morphological processes of inflection, derivation, and com-
pounding are productive, for which reason it is difficult to quantify their elements
exactly. Also, the use of words is constantly changing, with new ones entering and
obsolete ones leaving the current language. The closed classes, on the other hand,
show neither a comparable size and fluctuation, nor productive processes of inflec-
tion, derivation, or compounding.

The distinction between content words and function words seems problematic in
the case of indexical nouns like I, you, he, she, or it, indexical adjectives like here, or
now, and proper names nouns like Peter or R2D2. On the one hand, these words don’t
seem to convey “content” in the usual sense; on the other hand they take the same

11 For a more detailed discussion see CLaTR, Sect. 3.5.
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grammatical roles as genuine content words. The SLIM theory takes the position that
words which use one of the three mechanisms of reference (6.1.6) are content words
(Autosemantika),12 while words which do not refer on their own are function words
(Synsemantika). Accordingly, not only symbols but also indexicals and names are
regarded as content words.

13.2 Segmentation and Concatenation

Because a word may have several different word forms, there arises the question of
how many forms there are for a given set of words. To get a general idea, let us
consider 40 000 of the most frequently used elementary base forms of German.13

Elementary base forms are words which are not derived or composed from other
words. Of the 40 000 base forms in question, 23 000 happen to be nouns, 6 000 happen
to be verbs, and 11 000 happen to be adjectives.

German nouns have two to five different inflectional surfaces (14.5.4) – averaging
about four. The verbs have about 24 different forms (14.5.6). The adjectives have
normally 18 different inflectional forms. These numbers are based on a distinctive
categorization as illustrated in 13.1.5.14

Using a maximally concrete, surface compositional, distinctive categorization, the
numerical relation between base forms and their inflectional forms is as follows:

13.2.1 RELATION BETWEEN WORDS AND THEIR INFLECTIONAL FORMS

base forms inflectional forms

nouns: 23 000 92 000
verbs: 6 000 144 000
adjectives: 11 000 198 000

40 000 434 000

12 Marty (1908), pp. 205 f.
13 The morphology of English happens to be simple. For example, compared to French, Ital-

ian, or German, there is little inflection in English. Furthermore, much of compounding
may be regarded as part of English syntax rather than morphology – in accordance with
Francis and Kučera’s (1982) definition of a graphic word form cited above. For example,
kitchen table or baby wolves are written as separate words, whereas the corresponding com-
pounds in German are written as one word form, e.g., Küchentisch and Babywölfe. For this
reason, some morphological phenomena will be illustrated in this and the following two
chapters in languages other than English.

14 An exhaustive categorization based on traditional paradigm tables would arrive at much
higher numbers. For example, the adjectives of German have 18 inflectional forms per base
form according to a distinctive categorization. In contrast, an exhaustive categorization, as
presented in the Grammatik-Duden, p. 288, assigns more than eight times as many, namely
147 analyzed inflectional forms per base form, whereby the different analyses reflect dis-
tinctions of grammatical gender, number, case, definiteness, and degree, which in most
cases are not concretely marked in the surface.
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According to this estimate, the relation between words and their inflectional forms
in German is about one to ten, on average.

In addition to the inflectional morphology of German, however, there is also deriva-
tional and compositional morphology, allowing the formation of new complex words
from old ones. Consider, for example, noun-noun compounding, such as Haus/schuh,
Schuh/haus, or Jäger/jäger, which is of complexity n2. This means that from 20 000
nouns 400 000 000 possible compounds of length 2 can be derived (compound base
forms which can be inflected).

Furthermore, noun-noun compounds of length 3, such as Haus/schuh/sohle,
Sport/schuh/haus, or Jäger/jäger/jäger are of complexity n3. This means that an addi-
tional 8 000 000 000 000 (eight trillion) possible words may be formed. Because there
is no grammatical limit on the length of noun compounds, the number of possible
word forms in German is infinite. These word forms exist potentially because of the
inherent productivity of morphology.

In contradistinction to the possible word forms, the set of actual word forms is
finite. There is no limit, however, on the number of ‘new’ words, i.e., words that
have never been used before. These are called neologisms, and coined spontaneously
by the language users on the basis of known words and the rules of word formation.

A cursory look through Newsweek or The New Yorker will yield English neologisms
like the following:

13.2.2 EXAMPLES OF NEOLOGISMS

insurrectionist (inmate) three-player (set)
copper-jacketed (bullets) bad-guyness
cyberstalker trapped-rat (frenzy)
self-tapping (screw) dismissiveness
migraineur extraconstitutional (gimmick)

Because new word forms never observed before are constantly being formed, mor-
phological analysis should not merely list as many analyzed word forms as possible.
Rather, the goal must be a rule-based analysis of potential word forms on demand.

In traditional morphology, word forms are analyzed by disassembling them into
their elementary parts. These are called morphemes and defined as the smallest mean-
ingful units of a language. In contrast to the number of possible words and word
forms, the number of morphemes in a language is finite.

The notion of a morpheme is a linguistic abstraction which is manifested concretely
in the form of finitely many allomorphs. The term allomorph is of Greek origin and
means “alternative shape.” For example, the morpheme wolf is realized as the two
allomorphs wolf and wolv.

Just as sentences are composed of word forms rather than words, word forms are
composed of allomorphs rather than morphemes. By analogy to the definition of a
word (13.1.3), a morpheme is defined as the name of the set of associated allomorphs.
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13.2.3 DEFINITION OF THE NOTION morpheme

morpheme =def {associated analyzed allomorphs}

Like word forms, allomorphs are formally analyzed as ordered triples, consisting of
the surface, the category, and the semantic representation. The following examples,
based on the English noun wolf, are intended to demonstrate these basic concepts of
morphology as simply as possible.15

13.2.4 FORMAL ANALYSIS OF THE MORPHEME wolf

morpheme allomorphs

wolf =def {[wolf (sn sr) wolf],
[wolv (pn sr) wolf]}

The different allomorphs wolf and wolv are shown to belong to the same morpheme by
the common semantic representation in the third position. As the name of the semantic
representation (concept, literal meaning1) we use the base form of the allomorph, i.e.,
wolf, which is also used as the name of the associated morpheme.

Some surfaces, such as wolf, can be analyzed alternatively as an allomorph, a mor-
pheme (name), a word form, or a word (name).

13.2.5 COMPARING THE MORPHEME AND WORD wolf

morpheme allomorphs word word forms

wolf =def {wolf, wolf =def {wolf,
wolv} wolf/’s,

wolv/es,
wolv/es/’}

Other surfaces can be analyzed only as an allomorph, e.g., wolv, or only as a word
form, e.g., wolves.

Besides the segmentation into morphemes or allomorphs, a word form surface may
also be segmented into the units of its realization medium. Thus, written surfaces may
be segmented into letters, and spoken surfaces into syllables or phonemes.

15 Nouns of English ending in -lf, such as calf, shelf, self, etc. form their plural in general as
-lves. One might prefer for practical purposes to treat forms like wolves, calves, or shelves
as elementary allomorphic forms, rather than combining an allomorphic noun stem ending
in -lv with the plural allomorph es. This, however, would prevent us from explaining the
interaction of concatenation and allomorphy with an example from English. The category
segments sn, pn, and sr stand for singular noun, plural noun, and semi-regular (14.1.7),
respectively.
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13.2.6 ALTERNATIVE FORMS OF SEGMENTATION

allomorphs: learn/ing
syllables: lear/ning
phonemes: l/e/r/n/i/ng
letters: l/e/a/r/n/i/n/g

The syllables lear and ning do not coincide with the allomorphs learn and ing, and sim-
ilarly in the case of letters and phonemes. While, for example, syllables are important
in automatic speech recognition (Sect. 1.4), morphological analysis and automatic
word form recognition aim at segmenting the surface into morphemes or allomorphs,
which are independent16 of the concrete realization in speaking or writing.

13.3 Morphemes and Allomorphs

The number and variation of allomorphs of a given morpheme determine the degree
of regularity of the morpheme and – in the case of a free morpheme – the associated
word. An example of a regular word is the verb learn, the morpheme of which is
defined as a set containing only one allomorph.

13.3.1 THE REGULAR MORPHEME learn

morpheme allomorphs

learn =def {[learn (n . . . v) learn]}

A comparatively irregular word, on the other hand, is the verb swim, the morpheme
of which has four allomorphs, namely swim, swimm,17 swam, and swum. The change
of the stem vowel may be found also in other verbs, e.g., sing, sang, sung, and is
called ablaut.

13.3.2 THE IRREGULAR MORPHEME swim

morpheme allomorphs

swim =def {[swim (n . . . v1) swim],
[swimm (. . . b) swim],

16 Depending on the modality, there is the distinction between allographs in written language
and allophones in spoken language. Allographs are, for example, happy vs. happi-, and
allophones are, for example, the present vs. past tense pronunciation of read.

17 This allomorph is used in the progressive swimm/ing, avoiding the concatenative insertion
of the gemination letter. A psychological argument for handling a particular form noncon-
catenatively is frequency. Based on speech error data, Stemberger and MacWhinney (1986)
provide evidence that the distinction between rote and combinatorial formation is based not
only on regularity, but also on frequency, so that even regular word forms can be stored if
they are sufficiently frequent.
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[swam (n . . . v2) swim],
[swum (n . . . v) swim]}

The allomorph of the base form is used as the name of the morpheme. Thus, we may
say that swam is an allomorph of the morpheme swim.

Cases in which there is no similarity at all between the allomorphs of a given mor-
pheme are called suppletion.

13.3.3 EXAMPLE OF SUPPLETION

morpheme allomorphs

good =def {[good (adv ir) good],
[bett (cad ir) good],
[b (sad ir) good]}

While the degree in a regular adjective uses only one allomorph for the stem, e.g., fast,
fast/er, fast/est, the irregular adjective good uses three.18 Their common morpheme is
explicitly specified as the last element of each ordered triple.

In structuralism, morphemes of the open and closed classes are called free mor-
phemes, in contradistinction to bound morphemes. A morpheme is free if it can occur
as an independent word form, e.g., book. Bound morphemes, on the other hand, are
affixes such as the prefixes un-, pre-, dis-, etc., and the suffixes -s, -ed, -ing, etc., which
can occur only in combination with free morphemes.

Consider the simplified analysis of the English plural morpheme, which has been
postulated in such different forms as book/s, wolv/es, ox/en, and sheep/#.

13.3.4 EXAMPLE OF A BOUND MORPHEME (hypothetical)

morpheme allomorphs

-s =def {[s (pl1) plural],
[es (pl2) plural],
[en (pl3) plural],
[# (pl4) plural]}

In bound morphemes, the choice of the morpheme name, here -s, and the base form
of the allomorph, here ‘plural,’ is artificial. Also, postulating the ‘zero allomorph’ # is
in violation of the principle of surface compositionality (Sects. 4.5, 21.3).

13.4 Categorization and Lemmatization

Automatic word form recognition of an unknown form consists in principle of the
following three steps of morphological analysis. First, the unanalyzed surface is dis-

18 Practically, one may analyze good, better, best as basic allomorphs without concatenation.
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assembled into its basic elements19 (segmentation). Second, the basic elements are
analyzed in terms of their grammatical definition (lexical lookup). Third, the ana-
lyzed elements are reassembled by means of rules, whereby the overall analysis of the
word form is derived (concatenation).

Concatenation applies simultaneously to the surface, the category, and the semantic
representation, as shown by the following example based on German:

13.4.1 MORPHOLOGICAL ANALYSIS OF ungelernte

In LA Grammar, the simultaneous concatenation of surface, category, and semantic
representation is formally represented by the format of ordered triples:

13.4.2 SCHEMATIC DERIVATION IN LA GRAMMAR

("un" (CAT1) MEAN-a) + ("ge" (CAT2) MEAN-b)
("un/ge" (CAT3) MEAN-c) + ("lern" (CAT4) MEAN-d)

("un/ge/lern" (CAT5) MEAN-e) + ("t" (CAT6) MEAN-f)
("un/ge/lern/t" (CAT7) MEAN-g) + ("e" (CAT8) MEAN-h)

("un/ge/lern/t/e" (CAT9) MEAN-i)

This schematic20 analysis goes beyond the structure of 13.4.1 in that it is based on the
left-associative derivation order .

For automatic word form recognition, the following components are required.

13.4.3 COMPONENTS OF WORD FORM RECOGNITION

– online lexicon
For each basic element (i.e., morpheme or allomorph, depending on the ap-

proach) a lexical analysis must be defined, which is stored electronically.

19 Depending on the approach, the basic elements of word forms are either the allomorphs or
the morphemes.

20 For simplicity the categories and meanings of the different word form starts and next mor-
phemes are represented as CATn and MEAN-m.
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– Recognition algorithm
Using the online lexicon, each unknown word form (e.g., wolves) must be char-

acterized automatically with respect to categorization and lemmatization:
• Categorization

consists in specifying the part of speech (e.g., noun) and the morphosyntactic
properties of the surface (e.g., plural); this is needed for syntactic analysis.

• Lemmatization
consists in relating a word form, e.g., wolves, to the corresponding base form21

(e.g., wolf); the lemma provides access to the corresponding entry in a base form
lexicon.

The formal structure of an online lexicon is similar to that of a traditional dictionary.
It consists of lexical entries with the following structure:

13.4.4 BASIC STRUCTURE OF A LEXICAL ENTRY

[surface (lexical description)]

The entries are arranged in the alphabetical order of their surfaces. The surfaces serve
as keys which are used for both the ordering of the entries during the building of the
lexicon (storage) and the finding of a certain entry once the lexicon has been built
(retrieval). The surface is followed by the associated lexical description.

Because traditional and electronic lexica are based on the same structure, traditional
dictionaries are well suited for lemmatization in automatic word form recognition,
provided they exist online and no copyrights are violated. For example, in Webster’s
New Collegiate Dictionary, the word wolf has the following entry:

13.4.5 ENTRY OF A TRADITIONAL DICTIONARY (excerpt)

1wolf \’wu̇lf\ n. pl wolves \’wu̇lvz\ often attributed [ME, fr. OE wulf ; akin to
OHG wolf, L lupus, Gk lykos] 1 pl also wolf a: any of various large predatory mam-
mals (genus Canis and esp. C. lupus) that resemble the related dogs, are destructive
to game and livestock, and may rarely attack man esp. when in a pack – compare
COYOTE, JACKAL b: the fur of a wolf . . .

The base form surface (lemma) is followed by the lexical description, which specifies
the pronunciation, the part of speech (n), the plural form in writing and pronunciation,
the etymology, and a number of semantic descriptions and pragmatic uses.

The crucial properties of a lexical entry are the quality of the information contained
and the structural consistency of its coding. If these are given online, the information

21 In lexicography, the term lemma refers to the base form surface, which is used as the key
for storing or finding a lexical entry.
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can be renamed, restructured, and reformatted automatically22 without losing any of
the original information.

The recognition algorithm in its simplest form consists in matching the surface of
the unknown word form with the corresponding key (lemma) in the online lexicon,
thus providing access to the relevant lexical description.

13.4.6 MATCHING A SURFACE ONTO A KEY

There exist several computational methods for matching a given surface automatically
with the proper lemma in an electronic lexicon.23

The simplest is a linear search, i.e., going sequentially through the list of entries
until there is a match between the unknown surface and the key. In small lexica (con-
taining up to 50 entries) this method is well suited. Possible applications are the formal
languages of Part II, where each surface must be assigned a category by way of lexical
lookup.

The lexica of natural language are considerably larger, however, containing between
20 000 and 1 000 000 entries, depending on their purpose. Even more importantly,
most words are related to several word forms which must be categorized and lemma-
tized. Because in the natural languages

– the number of word forms is considerably larger than the number of words, at least
in inflectional and agglutinating languages, and

– the lexical entries normally define words rather than word forms,

it is best to handle categorization and lemmatization, on the one hand, and access to
the lexical entry, on the other, in two separate steps.

13.4.7 TWO-STEP PROCEDURE OF WORD FORM RECOGNITION

Automatic word form recognition takes place between surface and analyzed surface.
It consists of categorization and lemmatization, and is based on a special analysis lex-

22 For this, special programming languages like AWK (Aho et al. 1988) and Perl (Wall and
Schwartz 1990) are available.

23 See Aho and Ullman (1977), pp. 336–341.
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icon. Access to the base form entry, containing the semantic representation common
to the whole paradigm, takes place in a second step, using a traditional lexicon.

13.5 Methods of Automatic Word Form Recognition

Possible methods of automatic word form recognition may be distinguished as to
whether their analysis lexicon specifies word forms, morphemes, or allomorphs.24

Each of the three methods exhibits a characteristic correlation between the recognition
algorithm and the associated analysis lexicon.

The word form method25 uses an analysis lexicon consisting of complete word
forms.

13.5.1 ANALYZED WORD FORM AS LEXICAL ENTRY

[wolves (part of speech: Subst, num: Pl, case: N,D,A, base form: wolf)]

An analysis lexicon of word forms allows for the simplest recognition algorithm be-
cause the surface of the unknown word form, e.g., wolves, is simply matched whole
onto the corresponding key in the analysis lexicon.

Of the three steps of morphological analysis, namely (i) segmentation, (ii) lexical
lookup, and (iii) concatenation, the word form method omits steps (i) and (iii). Thus,
wolves (13.4.7), for example, is treated like and (13.1.7). By obtaining categorization
and lemmatization solely from lexical entries of whole word forms, this method is a
borderline case of morphological analysis.

The word form method may be useful as a quick and dirty method for toy systems,
providing lexical lookup without much programming effort (smart solution, Sect. 2.3).
In the long run this method is costly, however, because of the production,26 the size,27

and the basic finiteness of its analysis lexicon.
The last point refers to the fact that the word form method is inherently limited to

the entries provided by its analysis lexicon. Therefore it cannot recognize neologisms

24 The fourth basic concept of morphology, the word, does not provide for a recognition
method because words are not suitable keys for a multitude of word forms.

25 Also known as the full-form method based on a full-form lexicon.
26 It is possible to derive much of the word form lexicon automatically, using a base form lex-

icon and rules for inflection as well as – to a more limited degree – for derivation and com-
pounding. These rules, however, must be written and implemented for the natural language
in question, which is costly. The alternative of producing the whole word form lexicon by
hand is even more costly.

27 The discussion of German noun-noun compounds in Sect. 13.2 has shown that the size of
a word form lexicon that is attempting to be complete may easily exceed a trillion word
forms, thus causing computational difficulties.
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during runtime – unless all possible word forms are provided by the analysis lexi-
con. This, however, cannot be done because of the productivity of natural language
morphology.

Next consider the morpheme method.28 It uses the smallest analysis lexicon, consist-
ing of analyzed morphemes.29 Furthermore, neologisms may be analyzed and recog-
nized during runtime using a rule-based segmentation and concatenation of complex
word forms into their elements (morphemes). The only requirement is that the ele-
ments be lexically known and their mode of composition be handled correctly by the
rules.

The disadvantage of the morpheme method is a maximally complex recognition
algorithm. The analysis of an unknown surface during runtime requires the steps
of (1) segmentation into allomorphs, (2) reduction of the allomorphs to the corre-
sponding morphemes, (3) recognition of the morphemes using an analysis lexicon,
and (4) the rule-based concatenation of the morphemes to derive the analyzed word
form.

In wolves, for example, step (1) consists in the segmentation into the allomorphs
wolv and es. Step (2) reduces these to the corresponding morpheme surfaces wolf
and s, enabling lexical lookup as step (3). In step (4), the resulting analyzed mor-
phemes are concatenated by means of grammatical rules which derive the morphosyn-
tactic properties of the word form as a whole, including categorization and lemmati-
zation.

13.5.2 SCHEMA OF THE MORPHEME METHOD

Conceptually, the morpheme method is related to transformational grammar. Allo-
morphs are not treated as fully analyzed grammatical entities, but exist only as the
quasi-adulterated surface reflections of the ‘underlying’ morphemes which are re-
garded as the ‘real’ entities of the theory. Concatenation takes place at the level of
morphemes – and not at the level of the concretely given allomorphs. For this reason,
the morpheme method violates the principle of surface compositionality (S). Also,
because the morpheme method tries to compose the morphemes as much as possible
as constituents (8.4.3–8.4.6), it violates the principle of time-linear derivation order
(L) of the SLIM theory of language.

28 A prototype is the KIMMO-system of two-level morphology (Koskenniemi 1983), based
on finite state technology.

29 In light of the morpheme definition 13.2.3, a morpheme lexicon consists strictly speaking
of analyzed base form allomorphs.
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Mathematically and computationally, the morpheme method is of high complexity
(NP-complete)30 because the system must check the surface for all possible phenom-
ena of allomorphy. Faced with English valves, for example, the system would have to
consider the nonexisting *valf+s as a possible underlying morpheme sequence. Only
after all potential allomorph-morpheme reductions have been checked for a given sur-
face can concatenation begin.

Finally consider the allomorph method.31 It combines the respective advantages of
the word form and the morpheme methods by using a simple recognition algorithm
with a small analysis lexicon. Based on its rule-based analysis, the allomorph method
recognizes neologisms during runtime.

The allomorph method uses two lexica, called the elementary lexicon and the allo-
morph lexicon, whereby the latter is automatically derived from the former by means
of allo rules before runtime. The elementary lexicon consists of (i) the analyzed el-
ementary base forms32 of the open word classes, (ii) the analyzed elements of the
closed word classes, and (iii) the allomorphs of the affixes,33 as needed in inflection,
derivation, and compounding.

During runtime, the allomorphs of the allomorph lexicon are available as precom-
puted, fully analyzed forms34 (e.g., 13.2.4, 13.3.1, 13.3.2), providing the basis for a
maximally simple segmentation: the unknown surface is matched from left to right
with suitable allomorphs – without reducing them to morphemes.

13.5.3 SCHEMA OF THE ALLOMORPH METHOD

Concatenation takes place on the level of analyzed allomorphs by means of combi
rules. This method is in concord with the principles of surface compositionality (S)
and time-linear derivation order (L) of the SLIM theory of language.

The three basic methods may be compared schematically as follows:

30 See Sect. 12.2. The inherent complexity of the morpheme method is shown in detail by
Barton et al. (1987), pp. 115–186, using the analysis of spies/spy+s in the KIMMO system.

31 The allomorph method was first presented in Hausser (1989b).
32 In the case of irregular paradigms, also the suppletive forms are supplied (14.1.8).
33 Thus, no bound morphemes (13.3.4) are being postulated.
34 MacWhinney (1978) demonstrates the independent status of lexical allomorphs with lan-

guage acquisition data in Hungarian, Finnish, German, English, Latvian, Russian, Spanish,
Arabic, and Chinese.
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13.5.4 SCHEMATIC COMPARISON OF THE THREE BASIC METHODS

All three methods are based on matching the input surface with a corresponding key
of an analysis lexicon characteristic of the method in question. The first alternative
consists in whether or not the word form surfaces are segmented into their elements
during runtime. This alternative is not only linguistically relevant, but also of practical
consequence for the computational implementation.

If the input is not segmented, we obtain the word form method in which the input
surface is matched as a whole to corresponding keys of analyzed word forms. In this
case the well-known method of hash tables may be used for lexical lookup, as long as
the boundaries of each word form are marked, e.g., by spaces.

If the input surface is segmented, the concrete elements are the allomorphs. To
automatically determine the allomorph boundaries – which are not orthographically
marked – the method of trie structures is suited best (Sect. 14.3). The next question is
whether the allomorphs found in the surface should be reduced to morphemes prior to
lexical lookup or whether lexical lookup should be defined for allomorphs.

The first option results in the morpheme method, in which both segmentation of the
surface into allomorphs and the reduction of the allomorphs into the associated (unan-
alyzed) morphemes takes place during runtime. The morpheme surfaces obtained in
this manner are matched with corresponding keys in a lexicon consisting of analyzed
morphemes. Then the analyzed morphemes are put together again by grammatical
rules to categorize and lemmatize the word form in question.

The second option results in the allomorph method, in which the input surface is
matched onto fully analyzed allomorphs during runtime. The analyzed allomorphs
are generated automatically from an elementary lexicon by allo rules before runtime.
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During runtime the analyzed allomorphs need only be concatenated by means of left-
associative combi rules, which categorize and lemmatize the input.

Of the three methods, the allomorph method is best suited for the task. It is of low
mathematical complexity (linear), describes morphological phenomena of concatena-
tion and allomorphy in a linguistically transparent, rule-based manner, handles neol-
ogisms during runtime, may be applied easily to new languages, is computationally
space and time efficient, and can be easily debugged and scaled up. The allomorph
method is described in more detail in the following chapter.

Exercises

Section 13.1
1. Give the inflectional paradigms of man, power, learn, give, fast, and good. Gen-

erate new words from them by means of derivation and compounding.
2. Call up LA Morph on your computer and have the above word forms analyzed.
3. Explain the notions word, word form, paradigm, part of speech, and the differ-

ence between the open and the closed classes.
4. Why is it relevant to distinguish between the notions word and word form?
5. What is the role of the closed classes in derivation and compounding?
6. Why are only the open classes a demanding task of computational morphology?
7. How do the content and function words relate to the open and the closed classes?

Section 13.2
1. Why is the number of word forms in German potentially infinite?
2. Why is the number of noun-noun compounds n2?
3. What do the formal definitions of word and morpheme have in common?
4. What is a neologism?
5. Describe the difference between morphemes and syllables.

Section 13.3
1. What is suppletion?
2. Why is a bound morpheme like -ing neither in the open nor the closed classes?
3. What would argue against postulating bound morphemes?

Section 13.4
1. Explain the three steps of a morphological analysis.
2. Why does LA Grammar analyze allomorphs as ordered triples?
3. What are the components of a system of automatic word form recognition?
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4. What is a lemma? Are there essential differences between the entries of a tradi-
tional dictionary and an online lexicon for automatic word form recognition?

5. How does the surface function as a key in automatic word form recognition?
6. Explain the purpose of categorization and lemmatization.
7. What is an analysis lexicon?

Section 13.5
1. Describe three different methods of automatic word form recognition.
2. Why is there no word method of automatic word form recognition?
3. How does the word form method handle categorization and lemmatization?
4. Compare cost and benefit of the word form method.
5. Would you classify the word form method as a smart or as a solid solution?
6. Why is the morpheme method mathematically complex?
7. Why does the morpheme method violate surface compositionality?
8. Why does the morpheme method use surfaces only indirectly as the key?
9. Why is the morpheme method conceptually related to transformational gram-

mar?
10. Why does the allomorph method satisfy the principle of surface compositional-

ity?
11. Why is the runtime behavior of the allomorph method faster than that of the

morpheme method?



14. Word Form Recognition in LA Morph

The allomorph method has been developed and implemented as a system called
LA Morph. Linguistically, LA Morph is based on (i) an elementary lexicon, (ii) a set
of allo rules, and (iii) a set of combi rules. The allo rules take the elementary lexi-
con as input and generate from it a corresponding allomorph lexicon before runtime.
The combi rules control the time-linear concatenation of analyzed allomorphs during
runtime, resulting in the morphosyntactic analysis of complex word forms.

Section 14.1 explains the allo rules and defines four degrees of regularity for inflec-
tional paradigms. Section 14.2 gives an overview of allomorphic phenomena in nouns,
verbs, and adjectives of English, and investigates how many allomorphs a morpheme
has on average (allomorph quotient of English). Section 14.3 describes the computa-
tional method of segmenting word forms into their analyzed allomorphs by means of
a tree structure. Section 14.4 explains the combi rules. Section 14.5 gives an overview
of the concatenation patterns of inflectional morphology of English and German.

14.1 Allo Rules

An allo rule takes an entry of the elementary lexicon as input and derives from it one
or more allomorphs. The input and the output are defined in terms of patterns. The
basic structure of the allo rules may be shown as follows:

14.1.1 ABSTRACT FORMAT OF AN ALLO RULE

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_14, © Springer-Verlag Berlin Heidelberg 2014
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Allo rules apply before runtime and may modify the surface, the category, and the
semantic representation of their input.

When the allo rule component is applied to an elementary lexicon, all its entries are
run through the allo rules, which are arranged in a fixed order. If an entry matches the
input pattern of an allo rule, it is accepted and the associated allomorphs are produced.
If an entry is not accepted, it is passed on to the next allo rule. The last allo rule is the
default rule. Its input pattern accepts any entry and returns it unchanged.

The output of the allo rules is written sequentially into a file. In this way the elemen-
tary lexicon is converted automatically into a lexicon of analyzed allomorphs. Even a
lexicon comprising more than 100 000 base forms takes no more than a few seconds
to be run through the allo rule component.

Afterwards the allo rule component is not applied again until the allo rules or the
elementary lexicon have been modified. Theoretically, the allo rules describe all the
morphological regularities and irregularities of the language at hand. Practically, the
allo rule software component allows for testing on large amounts of relevant data,
which is the basis for incremental upscaling.

Consider the following entry of an elementary lexicon. The format of the entry
is that of the LA Morph version programmed by Hausser and Ellis 1990 (15.1.5).
The list-based categories of this version are close to the LA Grammars for artificial
languages:

14.1.2 EXAMPLE OF A BASE FORM ENTRY

("derive" (nom a v) derive)

The category (nom a v) characterizes the entry as a verb which takes a nominative
and an accusative as arguments (valency fillers).

The allo rules map the base form entry into the following analyzed allomorphs:

14.1.3 RESULT OF APPLYING ALLO RULES TO BASE FORM ENTRY

("derive" (sr nom a v) derive)
("deriv" (sr a v) derive)

In order to control application of the correct combi rules, the categories have the
additional marker sr (semi-regular). The first allomorph is used for the forms derive
and derive/s, the second for the forms deriv/ing and deriv/ed.

As an example of a more complicated (i) lexical entry, (ii) associated allomorphs,
and (iii) resulting inflectional forms, consider the analysis of the German verb schlafen
(sleep) in 14.1.4, 14.1.5, and 14.1.6, respectively.

14.1.4 BASE FORM ENTRY OF schlafen

("schla2fen" (KV VH N GE {hin\"{u}ber VS GE } {durch VH A GE }
{aus VH GE } {ein VS GE }\$ <be VH A GE- >
<ent VS GE- > <\"{u}ber VH A GE- > <ver VH A GE- >)
schlafen)
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The first element of this lexical entry is the surface in which the characteristic ablaut
variation of schlafen is specified by the marker ‘2.’ The second element is the cate-
gory1 (KV ...>), which is rather long and complex because its description includes
four variants with separable prefixes and four variants with nonseparable ones. The
third element is the base form schlafen without any surface markers.

The allo rules map the base form entry into the analyzed allomorphs schlaf, schläf,
and schlief:

14.1.5 OUTPUT OF ALLO RULES FOR schlafen

("schlaf" (IV V1 VH N GE { hin\"{u}ber VS GE } { durch VH A GE }
{ aus VH GE } { ein VS GE } $ < be VH A GE- >
< ent VS GE- > < \"{u}ber VH A GE- > < ver VH A GE- > )
schlafen)

("schl\"{a}f" (IV V2 _0 N GE { hin\"{u}ber VS GE }
{ durch VH A GE }
{ aus VH GE } { ein VS GE } $ < be VH A GE- >
< ent VS GE- > < \"{u}ber VH A GE- > < ver VH A GE- > )
schlafen)

("schlief" (IV V34 _0 N GE { hin\"{u}ber VS GE } { durch VH A GE }
{ aus VH GE } { ein VS GE } $ < be VH A GE- >
< ent VS GE- > < \"{u}ber VH A GE- > < ver VH A GE- > )
schlafen_i)

Triggered by the surface marker ‘2’ (14.1.4), three different allomorphs without sur-
face markers are derived. To ensure application of the correct combi rules, the first
segment KV (Klasse Verb) has been replaced by IV (intransitive verb), and the second

1 The category begins with the segment ‘KV’, specifying the part of speech, ‘verb’, The
second segment ‘VH’ indicates that schlafen combines with the auxiliary haben (have)
rather than sein (be). The third segment N represents the nominative valency, whereby
the absence of additional case segments characterizes the verb as intransitive. Finally, the
fourth segment ‘GE’ indicates that the past participle is formed with ge as in ge/schlaf/en
or aus/ge/schlaf/en – in contrast to, for example, ver/schlaf/en.

Then there follow expressions in curly brackets describing the nonseparable prefixes,
here hinüberschlafen, durchschlafen, ausschlafen, and einschlafen. These bracketed expres-
sions specify the kind of auxiliary, the kind of past participle, and the valency of each of
these variants.

The description of separable prefixes in the base form entry of the stem is necessary
for morphological as well as syntactic reasons. The prefix may occur both attached to the
verb as in (i) weil Julia schnell einschlief, and separated from the verb as in (ii) Julia schlief
schnell ein. In (ii) the prefix in the category of sleep is used by the syntax to identify ein as
part of the verb, which is semantically important. In (i) the prefix in the category is used by
the morphology to combine ein and schlief into the word form einschlief.

After the separable prefixes there follow the nonseparable prefixes of schlafen marked
by angled brackets. Again, the auxiliaries (e.g., hat verschlafen vs. ist entschlafen), the past
participle, and the valency structure (e.g., ist entschlafen vs. hat das Frühstück verschlafen)
are specified for each prefix variant.



272 14. Word Form Recognition in LA Morph

segment VH (combines with “haben”) by V1, V2, and V34 in the categories of the
respective allomorphs. The remainder of the original category, serving to handle sep-
arable and nonseparable prefixes, reappears unchanged in the allomorph categories.

Based on the above allomorphs, the combi rules analyze and generate nine
paradigms with 29 forms each. Thus a single base form entry is mapped into a to-
tal of 261 different inflectional forms.

14.1.6 THE WORD FORMS OF schlafen (excerpt)

("schlaf/e" (S1 {hin\"{u}ber}{durch A}{aus}{ein} V) schlafen_p)
("schlaf/e" (S13 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k1)
("schlaf/e/n" (P13 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._pk1)
("schlaf/e/st" (S2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k1)
("schlaf/e/t" (P2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k1)
("schlaf/t" (P2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._p)
("schlaf/end" (GER ) schlafen)
("schlaf/end/e" (E ) schlafen)
("schlaf/end/en" (EN ) schlafen)
("schlaf/end/er" (ER ) schlafen)
("schlaf/end/es" (ES ) schlafen)
("schlaf/end/em" (EM ) schlafen)
("schlaf/e/st" (S2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k1)
("schlaf/e/t" (P2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k1)
("schl\"{a}f/st" (S2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._p)
("schl\"{a}f/t" (S3 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._p)
("schlief" (S13 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._i)
("schlief/e" (S13 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._k2)
("schlief/en" (P13 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._ik2)
("schlief/est" (S2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._ik2)
("schlief/et" (P2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._ik2)
("schlief/st" (S2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._ik2)
("schlief/t" (P2 {hin\"{u}ber} {durch A} {aus} {ein} V ) s._i)
("ge/schlaf/en" (H) schlafen)
("ge/schlaf/en/e" (E) schlafen)
("ge/schlaf/en/en" (EN) schlafen)
("ge/schlaf/en/es" (ES) schlafen)
("ge/schlaf/en/er" (ER) schlafen)
("ge/schlaf/en/em" (EM) schlafen)

("aus/schlaf/e" (S1 V) ausschlafen_pk1)
("aus/schlaf/e" (S13 V ) ausschlafen_k1)
("aus/schlaf/en" (P13 A V ) ausschlafen_pk1)

...
("aus/schl\"{a}f/st" (S2 V) ausschlafen_p)
("aus/schl\"{a}f/t" (S3 V) ausschlafen_p)

...

The finite forms of schlafen retain the separable prefixes in their category because they
may be needed by the syntax, as in Susanne schlief gestern aus. The nonseparable
prefixes, on the other hand, are removed from the categories because the associated
surfaces, e.g., verschlafe, verschläfst, etc., have no separable variant. For the same
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reason the separable prefixes are omitted in the categories of nonfinite forms, e.g., hat
ausgeschlafen, wollte ausschlafen.

Depending on whether or not an inflectional paradigm (i) requires exactly one en-
try in the elementary lexicon, (ii) requires a special marker in the entry’s surface, or
(iii) derives more than one allomorph per entry, four different degrees of regularity
may be distinguished.

14.1.7 FOUR DEGREES OF REGULARITY IN LA MORPH

– Regular inflectional paradigm
The paradigm is represented by one entry without any special surface markings,
from which one allomorph is derived, e.g., learn ⇒ learn, or book ⇒ book.

– Semi-regular inflectional paradigm
The paradigm is represented by one entry without any special surface markings,
from which more than one allomorph is derived, e.g., derive ⇒ derive, deriv, or
wolf ⇒ wolf, wolv.

– Semi-irregular inflectional paradigm
The paradigm is represented by one entry with a special surface marker, from which
more than one allomorph is derived, e.g., swIm ⇒ swim, swimm, swam, swum.

– Irregular inflectional paradigm
The paradigm is represented by several entries for suppletive allomorphs which
pass through the default rule, e.g., go ⇒ go, went ⇒ went, gone ⇒ gone. Using
a suitable categorization, these allomorphs may be processed by the general combi
rules, as in go/ing.

The degrees of regularity may be represented as the following table:

14.1.8 TABULAR PRESENTATION OF THE DEGREES OF REGULARITY

one entry entry without one allomorph
per paradigm markings per entry

regular yes yes yes
semi-regular yes yes no
semi-irregular yes no no
irregular no no yes

This structural criterion for the classification of (ir)regularities is of general interest
insofar as the characterization of regularities and exceptions has always been regarded
as a central task of traditional morphology.

14.2 Phenomena of Allomorphy

To get a concrete idea of what the allo rules are needed for, let us consider different
instances of allomorphy in English. The following examples of nouns (14.2.1, 14.2.2),
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verbs (14.2.3, 14.2.4), and adjectives (14.2.5) are presented in a way which resembles
the structure of allo rules insofar as the (surface of the) input is listed under the key
word LEX and the associated output under the key words ALLO1, ALLO2, etc., in
a tabular format. They are only a precursor of the actual allo rules, however, because
(i) the structures in question are described by example rather than abstract patterns
and (ii) the description is limited to the surfaces.

The regular nouns of English occur in four different inflectional forms, namely
unmarked singular (book), genitive singular (book/’s), unmarked plural (book/s), and
genitive plural (book/s/’). These forms are analyzed and generated concatenatively by
combi rules using the base form and the suffixes ’s, s, and ’ .

The semi-regular nouns of English use different allomorphs for the stem in the
singular and the plural form. Like the regular nouns, their different forms are analyzed
in terms of concatenation. Thereby markers in the category ensure that each allomorph
is combined with the proper suffix, for example wolf/’s, but not *wolv/’s, and wolv/es,
but not *wolv/s.

14.2.1 ALLOMORPHS OF SEMI-REGULAR NOUNS

LEX ALLO1 ALLO2
wolf wolf wolv
knife knife knive
ability ability abiliti
academy academy academi
agency agency agenci
money money moni

The semi-irregular nouns of English generate their unmarked plural nonconcate-
natively by means of allo rules alone. The marked forms (genitives) of singular and
plural are handled in a concatenative manner.

14.2.2 ALLOMORPHS OF SEMI-IRREGULAR NOUNS

LEX ALLO1 ALLO2
analysis analysis analyses
larva larva larvae
stratum stratum strata
matrix matrix matrices
thesis thesis theses
criterion criterion criteria
tempo tempo tempi
calculus calculus calculi

The irregular nouns of English, such as child–children, foot–feet, ox–oxen, and
sheep–sheep, are not handled by allo rules, but rather by two entries in the elementary
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lexicon, one for the unmarked singular and one for the unmarked plural form. In ad-
dition there are pluralitantia like scissors and people which are also handled directly
in the elementary lexicon. The marked forms of the irregular nouns such as analysis’
are handled by special clauses of the relevant combi rules.

The regular verbs of English occur in four different inflectional forms, namely
unmarked present tense and infinitive (learn), marked present tense (learn/s), past
tense and past participle (learn/ed), and progressive (learn/ing). In addition there are
derivational forms like learn/er as well as their respective inflectional forms such as
learn/er/’s, etc. This set of forms is analyzed and generated by combi rules using the
base form and the suffixes (“bound morphemes,” 13.3.4) s, ed, ing, and er.

The semi-regular verbs of English use two different allomorphs. Like the regular
verbs, their inflectional forms are analyzed in terms of concatenation. Thereby mark-
ers in the category ensure that each allomorph is combined with the proper suffixes,
e.g., derive/s, but not *derive/ing, and deriv/ing, but not *deriv/s (14.1.3).

14.2.3 ALLOMORPHS OF SEMI-REGULAR VERBS

LEX ALLO1 ALLO2
derive derive deriv
dangle dangle dangl
undulate undulate undulat
accompany accompany accompani

The semi-irregular verbs of English generate their past tense and past participle
nonconcatenatively by means of allo rules alone. The marked form of the present
tense, e.g., swim/s, and the progressive, e.g., swimm/ing, are handled by concatenation.

14.2.4 ALLOMORPHS OF SEMI-IRREGULAR VERBS

LEX ALLO1 ALLO2 ALLO3 ALLO4
swIm swim swimm swam swum
rUN run runn ran run
bET bet bett bet bet

Though the ALLO4 allomorphs of run and bet have the same surface as their base
form, these forms differ in their respective categories. ALLO2 handles the gemination
needed for the progressive form.

The irregular verbs of English, such as arise–arose–arisen, break–broke–broken,
give–gave–given, go–went–gone, or seek–sought–sought are not handled by allo
rules. Instead the suppletive forms are treated in the elementary lexicon, one entry
for the unmarked present tense, one for the past tense, and one for the past participle.

The regular adjectives of English occur in four different inflectional forms, namely
unmarked (adnominal) positive (e.g., slow), comparative (e.g., slow/er), superlative
(e.g., slow/est), and marked (adverbial) positive (e.g., slow/ly). This set of forms is
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analyzed and generated by combi rules using the base form and the suffixes er, est,
and ly.

The semi-regular adjectives of English are also analyzed in terms of concatenation,
whereby markers in the category ensure that each allomorph is combined with the
proper suffixes, e.g., abl/er, but not *able/er, or free/ly, but not *fre/ly.

14.2.5 ALLOMORPHS OF SEMI-REGULAR ADJECTIVES

LEX ALLO1 ALLO2
able able abl
happy happy happi
free free fre
true true tru

Semi-irregular adjectives are not instantiated in English. The irregular adjectives of
English are exemplified by good–better–best–well.

In light of these examples there arises the question of how many word forms of En-
glish are based on allomorphic variants. From the viewpoint of linguistics this ques-
tion is of interest because the number of allomorphs – compared to the number of base
forms – is indicative of the relative degree of (ir)regularity of a natural language in the
area of morphology. From the viewpoint of programming it is of interest because the
additional number of precomputed allomorphs affects the load on the random access
memory (RAM).

If the number of allomorphic variants in natural language turned out to be very
large, then the alternative morpheme approach (13.5.2) would have the advantage of
computing allomorphs only on demand – for the surface currently analyzed. On the
other hand, if this number turned out to be rather small, then the precomputation of
allomorphs would require only a modest amount of additional RAM while resulting
in a tremendous simplification and speedup of the runtime analysis.

In short, the choice between the allomorph and the morpheme methods depends not
only on theoretical and technical considerations, but also on the empirical facts of nat-
ural language, namely the number of allomorphs relative to the number of morphemes.
We call this numerical correlation the allomorph quotient of a natural language.

14.2.6 DEFINITION OF THE ALLOMORPH QUOTIENT

The allomorph quotient is the percentage of additional allomorphs relative to
the number of base form entries.2

Because the allomorph method automatically derives all the possible allomorphs to a
given elementary lexicon, its application to a certain natural language provides all the
data needed for the computation of its allomorph quotient.

2 That is (the number of allomorphs minus the number of morphemes) divided by the number
of morphemes and multiplied by 100.
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Let us assume that we want to apply LA Morph to a natural language not previously
handled, e.g., English. The first step is to look for a traditional lexicon (13.4.5) that is
legally available online. Using computational methods, its grammatical information
can easily be ‘massaged’ into a format suitable for the application of allo rules.

Once the format of the traditional lexicon has been adjusted, and the allo- and combi
rules have been written for the new language, the system may be tested on free text.
Thereby many word forms will turn out to have two analyses. For example, if the
traditional lexicon used were Webster’s New Collegiate Dictionary, then

pseudoclassic
pseudopregnancy
pseudosalt
pseudoscientific
etc.

would have two analyses, in contrast to

pseudogothic
pseudomigraine
pseudoscientist
pseudovegetarian
etc.

which would have only one. The reason is as follows:
In order to recognize the highly productive compounds involving the prefix pseudo,

the LA Morph system must provide a general rule-based analysis. As a consequence,
words in Webster’s dictionary are recognized twice. The first reading is provided by
Webster’s as a simplex, for example, pseudoclassic, while the second is provided
by LA Morph as a compositional analysis, for example, pseudo/classic based on the
known forms pseudo and classic.

One method for avoiding this kind of ambiguity is to remove all base forms with a
parallel compositional analysis from the online lexicon. This may be done automat-
ically. First all the key word surfaces in the traditional lexicon are parsed by the LA
Morph system. Then all multiple analyses, such as pseudoclassic and pseudo/classic,
are collected and their base form entries, here pseudoclassic, are removed.

This approach has the advantage of substantially reducing the size of the elemen-
tary lexicon (in German and Italian to about half) while maintaining the original data
coverage with respect to categorization and lemmatization. In fact, the data coverage
of an LA Morph system based on such a reduced elementary lexicon will be much
greater than that of the original lexicon alone, e.g., Webster’s, because of the general,
rule-based handling of derivation and compounding.

A second method of eliminating the ambiguities in question leaves the non-elemen-
tary base forms in the lexicon and selects the most likely reading after the word form
analysis. For example, given the choice between an analysis as an elementary form
(e.g., pseudoclassic) and as a complex form (e.g., pseudo/classic), the system would
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normally choose the first. This has the advantage that given the choice between kinship
and kin/ship the unlikely compound-interpretation of water vessel for close relatives
would be filtered out.

The best way is to combine the respective advantages of the two approaches by
having two lexica. One is a reduced elementary lexicon which does not contain any
base forms which have parallel compositional analyses. This lexicon is used for the
categorization and lemmatization of word forms.

The other is a nonreduced base form lexicon of content words, e.g., Webster’s. It
assigns semantic representations to base forms including composita and derivata es-
tablished in use. During word form analysis the two lexica are related by matching the
result of lemmatization to a corresponding – if present – key word of the base form
lexicon (13.4.7).

For example, the word kin/ship resulting from a compositional analysis would be
matched to kinship in the nonreduced base form lexicon, accessing the proper seman-
tic description. In this way, (i) maximal data coverage – including neologisms – is
ensured by a rule-based analysis using the reduced base form lexicon, (ii) the possi-
bility of noncompositional (non-Fregean) meanings is allowed, and (iii) unnecessary
ambiguities are avoided.

LA Morph systems for which traditional lexica were reduced to elementary lex-
ica in the manner described above have resulted in the following allomorph quo-
tients:

14.2.7 THE ALLOMORPH QUOTIENT OF DIFFERENT LANGUAGES

Italian: 37 %
Wetzel (1996) reduces a traditional lexicon of 91 800 entries into an ele-
mentary lexicon of 44 000 entries. These base forms are mapped by allo
rules into an analysis lexicon of 60 300 entries. The resulting allomorph
quotient of 37 % corresponds to an average of 1.37 allomorphs per mor-
pheme.

German: 31 %
Lorenz (1996) reduces a traditional lexicon of 100 547 entries into an
elementary lexicon of 48 422 entries. These base forms are mapped by
allo rules into an analysis lexicon of 63 559 entries. The resulting allo-
morph quotient of 31 % corresponds to an average of 1.31 allomorphs
per morpheme.

English: 8.7 %
Hausser (1989b) uses an elementary lexicon containing 8 000 of the most
frequent base forms, from which allo rules derived an analysis lexicon
of 9 500 entries. The resulting allomorph quotient of 19 % corresponds
to an average of 1.19 allomorphs per morpheme.
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Leidner (1998) uses an elementary lexicon of 231 000 entries, which
was extracted from several corpora and extended with additional entries
from machine-readable dictionaries. The resulting allomorph quotient of
8.97 % corresponds to an average of 1.09 allomorphs per morpheme.

Spanish: 52.75 %
Mahlow (2000) reduces a traditional lexicon of 98 546 lemmata into an
elementary lexicon of 66 103 lemmata. These base forms are mapped by
allo rules into an analysis dictionary of 99 297 entries. The resulting allo-
morph quotient of 50.2 % corresponds to an average of 1.50 allomorphs
per morpheme.

Korean: 1.8 %
Kim (2009) reduces a traditional lexicon of 88 086 lemmata into an el-
ementary lexicon of 76 171 lemmata. These base forms are mapped by
allo rules into an analysis lexicon of 77 572 entries. The resulting allo-
morph quotient of 1.8 % corresponds to an average of 1.018 allomorphs.

These preliminary results show that the allomorph quotients resulting from the anal-
ysis of different languages (and the analysis style of different linguists) are of the
same order of magnitude. Furthermore, they are surprisingly low and therefore of no
practical consequence for runtime memory.

In addition, it must be taken into account that the analysis lexicon of allomorphs
usually has only half as many entries as the original traditional lexicon. With this
reduced lexicon the system analyzes not only all key surfaces (lemmata) of the original
traditional lexicon, but also all associated inflectional forms, an unlimited number of
derivational and compound forms as well as their inflectional forms.

Because the phenomenon of allomorphy is limited to the high frequency entries
of the lexicon,3 an allomorph quotient will decrease as the size of the lexicon is in-
creased with low frequency items. This is shown by the small and the large systems
for English cited in 14.2.7. In order to meaningfully compare the allomorph quotient
of different languages it should be normalized by basing the calculation on, for exam-
ple, the 100 000 most frequent words4 of the open classes without proper names and
acronyms.

14.3 Left-Associative Segmentation into Allomorphs

The construction of an elementary lexicon and the definition of allo rules are
language-specific tasks which require the methods and knowledge of traditional lin-
guistics. In order to utilize the analyzed allomorphs computationally, however, there

3 Bybee (1985), pp. 208–209.
4 In order to determine this set, a representative corpus of the language must be used. See

Chap. 15.
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must be a procedure which automatically segments any unknown surface, e.g., wolves,
into a matching sequence of analyzed allomorphs, i.e., wolv/es. This segmentation al-
gorithm is a language-independent procedure the implementation of which is a task
for computer science.

The automatic segmentation of a given word form surface into its allomorphs should
work as follows. If the unknown word form begins with, for example, W, any allo-
morphs not beginning with this letter should be disregarded. If the next letter is an O,
any allomorphs not beginning with WO should be disregarded, etc.

14.3.1 LEFT-ASSOCIATIVE LETTER BY LETTER MATCHING

With this method, the possible goal WOLF is eliminated as soon as the fourth let-
ter V is encountered. Thus, in the analysis of wolves the allomorph wolf is never
even considered. The theoretical relation between wolf and wolv is established solely
in terms of the common base form in the third position of their respective analy-
ses (13.2.4).

If the letter sequence in the unknown surface has been matched successfully by
an analyzed allomorph, e.g., wolv, but there are still letters left in the unknown sur-
face, as in, for example, wolves, the next allomorph is looked for. This method of
left-associatively matching allomorphs to the unknown surface pursues all possible
hypotheses in parallel from left to right. The result is a complete segmentation into all
possible allomorph sequences.

As an example in which two alternative segmentations are maintained in parallel
(lexical ambiguity), consider the German surface Staubecken:5

5 Corresponding hypothetical examples in English are

coverage grandparent history lamp/light land/s/end
cover/age grandpa/rent hi/story lam/plight land/send
cove/rage his/tory

rampage rampart scar/face sing/able war/plane
ramp/age ramp/art scarf/ace sin/gable warp/lane
ram/page ram/part

These examples were found computationally by Wetzel at the CL lab of Friedrich Alexan-
der Universität Erlangen Nürnberg (CLUE). Most of them, e.g., ‘warp/lane’ or ‘ramp/art’,
are not quite real because noun-noun compounds in English are usually written as separate
word forms.
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14.3.2 ALTERNATIVE SEGMENTATIONS OF A WORD FORM

surface: Staubecken Staubecken
segmentation: Stau/becken Staub/ecke/n
translation: reservoir dust corners

All that is required for the correct segmentation is to provide the relevant allomorphs
stau, staub, becken, ecke, and n, and to systematically match them from left to right
onto the unknown surface. This method works even in writing systems in which only
the beginning and end of sentences or even texts are marked, as in the continua writing
style of classical Latin.

Computationally, the left-associative, parallel, letter-by-letter matching of allo-
morphs is implemented by means of a trie structure6 or letter tree. A trie structure
functions as an index which makes it possible to find an entry (here an analyzed allo-
morph) by going through the key word letter by letter from left to right. In LA Morph
the trie structure is built up automatically when the elementary lexicon is run through
the allo rule component.

As an example of a trie structure consider 14.3.3, which shows the storage of the
allomorphs swim, swimm, swam, swamp, er, ing, s, and y:

14.3.3 STORING ALLOMORPHS IN A TRIE STRUCTURE

A trie structure consists of several levels, whereby the first level contains all the al-
lomorph initial letters, the second level contains all the allomorph second letters, etc.

6 Knuth (1973), p. 483, attributes the idea of trie structures to de la Briandais (1959). Aho
et al. (1983), p. 163, attribute it to Fredkin (1960). The name ‘trie’ is taken from the middle
of the word retrieval. According to Aho et al. (1983) “trie was originally intended to be a
homonym of ‘tree,’ but to distinguish these two terms many people prefer to pronounce trie
as though it rhymes with ‘pie’.”
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The ‘/’ and ‘\’ connectors between the different levels in 14.3.3 indicate legal con-
tinuations from one level to the next. For example, the attempt to find an allomorph
analysis for the input SWQ would break off after SW because in 14.3.3 there is no Q
underneath the W on the third level.

The lexical analysis of an allomorph is stored at its last letter in the trie structure.
Consider, for example, the search for the analyzed allomorph swim. Because its sur-
face consists of four letters, its lexical analysis is stored at the fourth level of the trie
structure. The entry is found by going to the letter S on the first level, then to the letter
W underneath the S on the second level, etc.

The search is successful if the navigation through the trie structure arrives at a letter
with a lexical analysis. When such an analysis is found, three possibilities arise:

– There are no letters left in the surface of the unknown word form, e.g., SWAM. Then
the program simply returns the analysis stored at the last letter, here M.

– There are still letters left in the surface of the unknown word form. Then one of the
following alternatives applies:
• The allomorph found so far is part of the word form, as swim in SWIMS. Then

the program (i) gives the lexical analysis of swim to the combi rules of the system
and (ii) looks for the next allomorph (here, s), starting again from the top level
of the trie structure.

• The allomorph found so far is not part of the word form, as swam in SWAMPY.
In this case the program continues down the trie structure provided there are
continuations. In our example, it will find swamp.

Because it becomes apparent only at the very end of a word form which of these
two possibilities applies – or whether they apply simultaneously in the case of an
ambiguity (14.3.2) – they are pursued simultaneously by the program.

The downward search in the trie structure is stopped if there is an entry and/or there
is no continuation to a lower level. The latter may be caused by ungrammatical input
(not a possible allomorph of the language) or by an analysis lexicon of allomorphs
which is not yet complete.

14.4 Combi Rules

The trie-structure-based segmentation of an unknown surface into analyzed allo-
morphs in LA morphology corresponds to automatic word form recognition in
LA syntax. Similarly, the time-linear composition of allomorphs into word forms by
the combi rules of LA morphology corresponds to time-linear composition of word
forms into sentences by rules of LA syntax.

Because the allomorphs of LA morphology and the word forms of LA syntax are
similar in structure (ordered triples), their respective time-linear composition is based
on the same rule mechanism of abstract LA Grammar (Part II) and the same parser:
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14.4.1 COMBI RULE SCHEMA

input output
ri : (pattern of start) (pattern of next) ⇒ rpi (pattern of new start)

Each time a rule ri has mapped an input pair into a new word start, a next allomorph
is searched for in the trie structure. The next allomorph and the current word start
form a new input pair to which all the rules in the rule package rpi are applied. This is
repeated as long as (i) next allomorphs are being provided by a matching between sec-
tions of the word form surface and the continuations in the trie structure (14.3.3), and
(ii) the process of left-associative combinations is not stopped prematurely because
no rule in any of the current rule packages is successful.

While the time-linear combi rules of LA morphology resemble the time-linear rules
of LA syntax, they differ from the allo rules of LA morphology as follows:

An allo rule takes a lexical entry as input and maps it to one or more allo-
morphs.
A combi rule takes a word form start and a next allomorph as input and
maps it to a new word form start.

They differ also in that the allo rules usually modify the surface of their input, whereas
the combi rules combine the surfaces of their input expressions without change. Fur-
thermore, the allo rules are applied before runtime, whereas the combi rules apply
during runtime.

The combi rules ensure that

1. the allomorphs found in the surface are not combined into ungrammatical word
forms, e.g., *swam+ing or *swimm+s (input condition),

2. the surfaces of grammatical allomorph combinations are properly concatenated,
e.g., swim+s ⇒ swims,

3. the categories of the input pair are mapped into the correct result category, e.g.,
(NOM V) + (SX S3) ⇒ (S3 V),

4. the correct result is formed on the level of semantic interpretation, and
5. after a successful rule application the correct rule package for the next combina-

tion is activated.

The structure of morphological analysis provided by the LA Morph parser is illus-
trated with the following trace for the input unduly:

14.4.2 PARSING unduly IN LA MORPH

1 +u [NIL . NIL]
2 +n [NIL . (un (PX PREF) UN)]
RP:{V-START N-START A-START P-START}; fired: P-START
3 +d [(un (PX PREF) UN) . (d (GG) NIL)]

+d [NIL . NIL]
4 +u [(un (PX PREF) UN) . (du (SR SN) DUE (SR ADJ-V) DUE)]
RP:{PX+A UN+V}; fired: PX+A

+u [NIL . NIL]



284 14. Word Form Recognition in LA Morph

5 L [(un+du (SR ADJ) DUE) . (l (GG) NIL (ABBR) LITER)]
RP:{A+LY}; fired: none

+l [(un (PX PREF) UN) . NIL]
+l [NIL . NIL]

6 +y [(un+du (SR ADJ) DUE) . (ly (SX ADV) LY)]
RP:{A+LY}; fired: A+LY

("un/du/ly" (ADV) due)

This format of an LA Morph analysis shows the step-by-step search through the trie
structure. At the second letter ‘n’ the allomorph entry un is found, whereby the word
form start is NIL. Other allomorphs found are du, l, and ly.

In the analysis we may distinguish between the optional derivation and the oblig-
atory result. The derivation shows which allomorphs were found, which rules were
tried, and which were successful. The derivation provides valuable heuristics for de-
bugging and upscaling the system.

The result, i.e., the content of the last line, is used in applications of LA Morph, such
as syntactic parsing. In such applications the derivation is of little interest and omit-
ted in the output. The result provides the required categorization and lemmatization.
For example, in 14.4.2 the word form unduly is categorized as an adverb and lem-
matized as due, whereby the negation is coded in the semantic representation stored
underneath the base form.

The combi rules of LA Morph ensure that only grammatically correct forms are
recognized or generated. As an example, consider the attempt to combine the legal
allomorphs able and ly into an illegal word form:

14.4.3 PARSING UNGRAMMATICAL ablely IN LA MORPH

1 +a [NIL . (a (SQ) A)]
2 +b [NIL . NIL]
3 +l [NIL . (abl (SR ADJ-A) ABLE)]
RP:{V-START N-START A-START P-START}; fired: A-START
4 +e [(abl (SR ADJ) ABLE) . NIL]

+e [NIL . (able (ADJ) ABLE)]
RP:{V-START N-START A-START P-START}; fired: none
5 +l [(abl (SR ADJ) ABLE) . NIL]

ERROR
Unknown word form: "ablely"
NIL

The result characterizes the input *ablely as ungrammatical.
Finally, consider the analysis of the simplex undulate, which happens to share the

first five letters with unduly (14.4.2).

14.4.4 PARSING THE SIMPLEX undulate IN LA MORPH

1 +u [NIL . NIL]
2 +n [NIL . (un (PX PREF) UN)]
RP:{V-START N-START A-START P-START}; fired: P-START
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3 +d [(un (PX PREF) UN) . (d (GG) NIL)]
+d [NIL . NIL]

4 +u [(un (PX PREF) UN) . (du (SR SN) DUE (SR ADJ-V) DUE)]
RP:{PX+A UN+V}; fired: PX+A

+u [NIL . NIL]
5 +l [(un+du (SR ADJ) DUE) . (l (GG) NIL (ABBR) LITER)]
RP:{A+LY}; fired: none

+l [(un (PX PREF) UN) . NIL]
+l [NIL . NIL]

6 +a [(un+du (SR ADJ) DUE) . NIL]
+a [NIL . NIL]

7 +t [(un+du (SR ADJ) DUE) . NIL]
+t [NIL . (undulat (SR A V) UNDULATE)]

RP:{V-START N-START A-START P-START}; fired: V-START
8 +e [(un+du (SR ADJ) DUE) . (late (ADJ-AV) LATE

(ADV) LATE)]
RP:{A+LY}; fired: none

+e [(undulat (SR A V) UNDULATE) . NIL]
+e [NIL . (undulate (SR NOM A V) UNDULATE)]

RP:{V-START N-START A-START P-START}; fired: V-START
("undulate" (NOM A V) UNDULATE)

Up to the fifth letter the derivation is identical to that of unduly in 14.4.2. These hy-
potheses do not survive, however, and in the end the word form turns out to be a
simplex. At letter 8, the allomorph undulat (as in undulat/ing) is found, but it is su-
perseded by the longer allomorph. The fact that the allomorphs undulat and undulate
belong to the same morpheme is expressed solely in terms of their common semantic
representation.

14.5 Concatenation Patterns

To get a concrete idea of what the combi rules are needed for, let us consider different
instances of inflectional concatenation in English.

14.5.1 CONCATENATION PATTERNS OF ENGLISH NOUNS

The category (sn) stands for a singular noun, (ng) for noun genitive, and (pn) for plural
noun. The example book represents a regular noun. The examples wolf and monkey
represent different kinds of semi-regular nouns.
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14.5.2 CONCATENATION PATTERNS OF ENGLISH VERBS

The ‘*’ in the categories of 14.5.2 stands for the oblique (i.e., non-nominative) valency
positions, which vary in different verbs, e.g., (sleep (nom′ v) sleep), (see (nom′ a′ v)
see), (give (nom′ d′ a′ v) give), or (give (nom′ a′ to′ v) give). The v indicates a finite
verb form. b and hv represent the nonfinite present and past participle, respectively,
indicating the combination with a form of be or have.

The example learn in 14.5.2 illustrates the concatenation pattern of a regular verb.
The examples derive and apply represent different instances of semi-regular verbs.
In addition to the forms shown above, there are derivational forms like learn/er and
learn/able.

14.5.3 CONCATENATION PATTERNS OF ADJECTIVES

The categories (adj), (adv), (cad), and (sad) stand for adjective, adverb, comparative
adjective, and superlative adjective, respectively. The example quick in 14.5.3 illus-
trates the concatenation pattern of a regular paradigm, while able and steady represent
different instances of semi-regular adjectives.

These examples show that the systematic separation of allomorphy and concatena-
tion results in a highly transparent description of different kinds of paradigms. The
schematic outlines of concatenation patterns like those in 14.5.1, 14.5.2, and 14.5.3
provide the conceptual basis for a systematic development of lexical entries, allo rules,
and concatenation rules in new languages. They work equally well for inflectional,
derivational, and compositional morphology.

As an example of a more complicated morphology, consider the nominal and verbal
concatenation patterns of German. They will be referred to in the syntactic analysis of
German in Chap. 18.
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14.5.4 CONCATENATION PATTERNS OF GERMAN NOUNS

The purpose of the categories in 14.5.4 is to capture the agreement restrictions of the
determiner-noun combination as simply and succinctly as possible. While a traditional
paradigmatic analysis always assigns eight lexical analyses to a German noun (nom-
inative, genitive, dative, and accusative, in the singular and plural), the distinctive
categorization of 14.5.4 assigns only one lexical analysis per distinct surface form.
Because there are two to five surface forms per noun, the categorization in 14.5.4
reduces the average number of forms per noun paradigm on average to less than half.

The category segments are explained and illustrated in the following list.

14.5.5 CATEGORY SEGMENTS OF GERMAN NOUN FORMS

mn = Masculinum Nominativ (Bote)

m–g = Masculinum no_Genitiv (Tag)

–fg = no_Femininum Genitiv (Tages, Kindes)

–fd = no_Femininum Dativ (Schmerze, Kinde)

m–np = Masculinum no_Nominativ or Plural (Boten)

m–gp = Masculinum no_Genitiv or Plural (Braten)

mgp = Masculinum Genitiv or Plural (Uhus)

m–gp–d = Masculinum no_Genitiv or Plural no_Dativ (Gipfel)

f = Femininum (Frau)
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n–g = Neutrum no_Genitiv (Kind)

ng = Neutrum Genitiv (Kindes)

nd = Neutrum Dativ (Kinde)

n–gp = Neutrum no_Genitiv or Plural (Leben)

n–gp–d = Neutrum no_Genitiv or Plural no_Dativ (Wasser)

ndp–d = Neutrum Dativ or Plural no_Dativ (Schafe)

p = Plural (Themen)

p–d = Plural no_Dativ (Leiber)

pd = Plural Dativ (Leibern)

The category segments consist of one to four letters, whereby the first letter is m, f, –f,
n, or p, specifying either gender or plural. The second letter, if present, is a positive or
negative specification of case. The third letter, if present, is p, indicating that a singular
form is also used for plural. The fourth letter is a case restriction on the plural. The
agreement restrictions on determiner-noun combinations in German are described in
Sect. 18.1 and defined in LA D2 (18.2.5).

The left-associative concatenation patterns of German verbs are illustrated in 14.5.6
with the semi-irregular forms of schlafen (sleep). The elementary base forms, ana-
lyzed allomorphs, and paradigm forms of this word have been presented in 14.1.4,
14.1.5, and 14.1.6, respectively.

14.5.6 A SEMI-IRREGULAR VERB PATTERN OF GERMAN
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Extensive applications of LA Morph to different languages with fully developed mor-
phology have shown that a strictly time-linear7 analysis works well for concatenation,
even in complicated semi-irregular paradigms with prefixes, suffixes, and several allo-
morphs. Because the time-linear derivation order is also the basis for a complete seg-
mentation of the unknown surface into analyzed allomorphs, segmentation and con-
catenation can work incrementally, hand in glove. In addition, a time-linear derivation
order corresponds to the empirical situation of word form recognition and synthesis,
and is therefore the psychologically most plausible.

Exercises

Section 14.1
1. What is the form and function of allo rules?
2. Why must there be a default rule and where is it ordered among the allo rules?
3. At what point in the development or application of a LA Morph system are the

allo rules to be applied?
4. Describe four degrees of regularity in the inflectional paradigms. What structural

properties are the basis for these distinctions?

Section 14.2
1. Describe the phenomenon of allomorphy in the nouns, verbs, and adjectives of

English.
2. What is the smallest number of allomorphs a morpheme can have?
3. What is the definition of the allomorph quotient?
4. Compare the allomorph quotient of different languages. What does the allomorph

quotient say about the word forms of a language?
5. Does the allomorph quotient stay constant when the lexicon is substantially en-

larged with low frequency items?
6. Explain the notion of normalizing the allomorph quotients of different natural

languages.

7 The time-linear approach of LA Morph is in contradistinction to the popular method of
truncation. Truncation removes endings from the right to isolate the stem, which is why
this method is also called stemming. Because truncation does not segment the surface into
analyzed allomorphs, but is based on patterns of letters, it provides no detailed morpho-
syntactic analysis, works only in morphologically simple languages, and is very imprecise
even there. Moreover, the right-to-left direction of truncation is in conflict with the basic
time-linear structure of natural language production and interpretation.
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Section 14.3
1. How should the segmentation of word forms into allomorphs work conceptually?
2. What is a trie structure and what is its function in automatic word form recogni-

tion?
3. What determines the number of levels in a trie structure?
4. Under what conditions is the search for an allomorph in a trie structure discon-

tinued?
5. Under what conditions is the search for an allomorph in a trie structure success-

ful?

Section 14.4
1. What is the relation between the combi rules of LA Morph and the rules of LA

Grammar in general?
2. Why is neither the word form nor the morpheme method compatible with the

algorithm of LA Grammar?
3. What is the function of the combi rules?
4. What do the allo- and the combi rules have in common, and how do they differ?
5. Describe the linguistic analysis of a complex word form in LA Morph.
6. What is shown by the derivation of an LA Morph analysis? What is this infor-

mation used for?
7. What is shown by the result of a LA Morph analysis? What is this information

used for?
8. How does LA Morph handle ungrammatical input?

Section 14.5
1. Describe the concatenation patterns of the inflectional paradigms of English

nouns, verbs, and adjectives.
2. Do left-associative combi rules show a difference in the combination of a prefix

and a stem, on the one hand, and a word start and a suffix, on the other? Illustrate
your answer with the example un/du/ly.

3. Which reasons support an analysis in morphology from left to right, and what
speak against an analysis from right to left, based on truncation (stemming)?

4. Is the method of truncation (stemming) a smart or a solid solution?
5. Compare the distinctive categorization of German nouns with a traditional

paradigmatic analysis (Sect. 18.2).



15. Corpus Analysis

This chapter first analyzes the general relation between linguistic analysis and compu-
tational method. As a familiar example, automatic word form recognition is used. The
example exhibits a number of properties which are methodologically characteristic of
all components of grammar. We then show methods for investigating the frequency
distribution of words in natural language.

Section 15.1 describes the basic modularity which systems of computational linguis-
tics must satisfy. Section 15.2 presents the method of subtheoretical variants using the
example of multicats for lexical ambiguities. Section 15.3 describes the principles of
building representative corpora, needed for testing systems of automatic word form
recognition. Section 15.4 explains the frequency distribution of word forms in nat-
ural language. Section 15.5 describes the method of statistically based tagging and
evaluates its accuracy in comparison to rule-based systems.

15.1 Implementation and Application of Grammar Systems

The design of a linguistic component such as word form recognition requires the
choice of a general theory of language in order to ensure a smooth functional interac-
tion with other components of the system, e.g., syntax and semantics. This decision
in turn influences another important choice, namely that of a grammar system.

A well-defined grammar system consists of two parts:

15.1.1 PARTS OF A GRAMMAR SYSTEM

– Formal algorithm
– Linguistic method

On the one hand, the algorithm and the method must be independent of each other, in
order to enable the formal definition of the algorithm. This in turn is a precondition
for mathematical complexity analysis and a declarative specification of the implemen-
tation (Sect. 9.1).
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On the other hand, the algorithm and the method must fit together well. This is
because the linguistic method interprets the formal algorithm with respect to an area
of empirical phenomena, while the formal algorithm provides a procedural realization
of the linguistic method.

For example, designing a grammar system of automatic word form recognition
presents us with the following options:

15.1.2 OPTIONS FOR A GRAMMAR SYSTEM OF WORD FORM RECOGNITION

– Formal algorithm:
choice between C (Sect. 7.4), PS (Sect. 8.1), and LA Grammar (Sect. 10.2).

– Linguistic method:
choice between word form, morpheme, and allomorph method (Sect. 13.5).

For empirical, methodological, and mathematical reasons the allomorph method and
the algorithm of LA Grammar were chosen, resulting in the grammar system of
LA Morphology, implemented as LA Morph.

The distinction between algorithm and method holds also for syntactic grammar sys-
tems. Transformational grammar uses the algorithm of PS Grammar and the method
of constituent structure. Montague grammar uses the algorithm of C Grammar and
the method of truth conditions. LA Syntax uses the algorithm of LA Grammar and
the method of traditional analysis based on valency, agreement, and word order.

A grammar system should be defined in such a way that it can be implemented in
different manners and applied to different languages. This modularity between gram-
mar system, implementation, and application leads to the following standard:

15.1.3 MINIMAL STANDARD OF WELL-DEFINED GRAMMAR SYSTEMS

A grammar system is well-defined only if it simultaneously allows
1. different applications in a given implementation, and
2. different implementations in a given application.

The first point is necessary for empirical reasons. In order to determine how suitable a
grammar system is for the analysis of natural language, it must be tested automatically
on large amounts of realistic data. This is the simplest, most straightforward, and most
effective scientific strategy to show whether or not its method brings out a common
core of linguistic principles, and whether or not its algorithm has sufficient generative
capacity while maintaining low mathematical complexity.

The second point is necessary for practical reasons. In various circumstances the
computational implementation of a grammar system will have to be replaced by an-
other one – because of new hardware using a different operating system, a changing
preference regarding the programming language, changing demands on the efficiency
of the system, changing interface requirements, etc.
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Under such circumstances there is no valid theoretical reason why a reimplemen-
tation should necessitate changes in its formalism or its applications. On the con-
trary, different implementations of a grammar system are an excellent way to demon-
strate which properties of the grammar system are a necessary part of the abstract
specification and which result merely from accidental properties of the program-
ming.

The essential modularity1 between a grammar system, its implementations, and its
applications may be shown schematically as follows:

15.1.4 MODULARITY OF A GRAMMAR SYSTEM

For systems of computational linguistics, this modularity is as important as the func-
tional compatibility2 of the different components of grammar, and the computational
suitability3 of the algorithm.

Regarding applications, the grammar system of LA Morphology has so far been
used for word form recognition of English, German, Korean, Italian, and Span-
ish (14.2.7), with smaller systems for French, Japanese, and Polish. These success-
ful implementations have strengthened confidence in the approach of LA Morphol-
ogy.4

Regarding implementation, LA Morphology has so far been realized as follows:

1 These considerations should be seen in light of the fact that it is tempting – and therefore
common – to quickly write a little hack for a given task. A hack is an ad hoc piece of
programming code which works, but has no clear algebraic or methodological basis. Hacks
are a negative example of a smart solution (Sect. 2.3).

In computational linguistics, as in other fields, little hacks quickly grow into giant hacks.
They may do the job in some narrowly defined application, but their value for linguistic
or computational theory is limited at best. Furthermore, they are extremely costly in the
long run because even their own authors encounter ever increasing problems in debugging
and maintenance, not to mention upscaling within a given language or applications to new
languages.

2 To be ensured by the theory of language.
3 To be ensured by the principle of type transparency, Sect. 9.3.
4 Especially valuable for improving the generality of the system was the handling of the

Korean writing system Hangul. The various options for coding Hangul are described in
Lee (1994).
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15.1.5 DIFFERENT IMPLEMENTATIONS OF LA MORPHOLOGY

1988 in Lisp (Hausser and Kaufmann)
1990 in C (Hausser and Ellis)
1992 in C, ‘LAMA’ (Bröker 1991)
1994 in C, ‘LAP’ (Lorenz and Schüller 1994)
1995 in C, ‘Malaga’ (Beutel 1997)

These different implementations are jointly referred to as LA Morph. Though they
differ in some ways,5 they share the following structural principles:

– Specification of the allo rules (14.1.1) and the combi rules (14.4.1) on the basis of
patterns which are matched with the input.

– Storage of the analyzed allomorphs in a trie structure and their left-associative
lookup with parallel pursuit of alternative hypotheses (Sect. 14.3).

– Modular separation of motor, rule components, and lexicon, permitting a simple ex-
change of these parts, for example, in the application of the system to new domains
or languages.

– Use of the same motor and the same algorithm for the combi rules of the morpho-
logical, syntactic, and semantic components during analysis.

Within the general framework, however, the empirical analysis of large amounts of
different kinds of data has led to the development of subtheoretical variants.

5 The use of Lisp in the 1988 version allowed for a quick implementation. It employed the
same motor for word form recognition and syntax, and was tested on sizable fragments of
English and German morphology and syntax. It had the disadvantage, however, that the
rules of respective grammars were defined as Lisp functions, for which reason the system
lacked an abstract, declarative formulation.

The 1990 C version was the first to provide a declarative specification of the allo- and the
combi rules based on regular expressions (RegExp) in a tabular ASCII format, interpreted
automatically and compiled in C.

The 1992 reimplementation aimed at improvements in the pattern matching and the trie
structure. It did not get wider use, however, because it did not allow for the necessary
interaction between the levels of surface and category, and had omitted an interface to
syntax.

The 1994 reimplementation repaired the deficiencies of the 1992 version and was tested
on sizable amounts of data in German, French, and Korean. These experiences resulted in
many formal and computational innovations.

The 1995 implementation of the Malaga system took a new approach to the handling of
pattern matching, using attribute-value structures. Malaga provides a uniform framework
for simultaneous morphological, syntactic, and semantic parsing and generation.
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15.2 Subtheoretical Variants

The algebraic definition of LA Grammar in Chaps. 10–12 aimed at the simplest, most
transparent notation for explaining the complexity-theoretic properties of the algo-
rithm in applications to artificial languages. Applications to natural languages, how-
ever, encountered empirical phenomena which suggested modifications of the original
notation. These resulted in subtheoretical variants. In contrast to a derived formalism
(7.1.6 and 7.1.7), a subtheoretical variant does not change the component structure
and the theoretical status of the original system.

One phenomenon leading to a modification of the original format was lexical am-
biguity in morphology and syntax. Consider, for example, the statistically most fre-
quently used word form of German, the determiner der. As indicated in 15.2.1, it has
at least three different sets of agreement properties, which may be represented as three
different lexical readings:

15.2.1 COMBINATORICS OF THE GERMAN DETERMINER der

The determiner categories consist of three segments of which the first determines the
adjective ending, e.g. e′, the second the form of a compatible noun, e.g., mn′, and
the third the result, e.g., s3. The result category segment s3 stands for singular third
person, g for genitive, and d for dative. The specification of number and person in s3
is required only in the nominative, which – as subject – agrees in these parameters
with the finite verb form (Sects. 16.2 and 16.3).

Compared to a traditional paradigm analysis, the categorical analysis in 15.2.1 is
designed to avoid unnecessary ambiguities. This is motivated both linguistically (con-
creteness) and computationally (lower combinatorial complexity). For example, the
categories (e) and (en) of the adjective forms schöne and schönen do not specify any
values for gender, number, case, and definiteness (which would produce seven and 19
lexical readings, respectively), but only the ending, the choice of which depends on
the determiner rather than the noun, as shown by the following examples:
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15.2.2 AGREEMENT OF ADJECTIVE-ENDING WITH DETERMINER

The point is that der schöne Baum and ein schöner Baum have the same case and
number (nominative singular) and use the same noun (Baum). Therefore, the gram-
matical well-formedness of choosing schöne versus schöner depends solely on the
choice of a definite (der) versus indefinite (ein) determiner.

The categorization of the noun forms Baum as (m–g), i.e., masculine minus genitive,
Bäume as (p–d), i.e., plural minus dative, and Frau as (f), i.e., feminine, agrees with
that of table 14.5.5. This distinctive categorization avoids unnecessary readings and
reflects the fact that German nouns either have a grammatical gender, in which case
they are singular, or are plural, in which case there is no gender distinction. There is
also a possibility of fusing the second and third reading of 15.2.1 by means of the new
category segment g&d (for genitive and dative, cf. categorization in 15.2.3), reducing
the total number of readings to three.

These reductions are valuable for practical syntax. For example, a traditional, ex-
haustive categorization of the word forms in der schönen Frauen would require a
total of 134 ordered pairs to be checked for their grammatical compatibility, whereas
the distinctive categorization requires the checking of only five ordered pairs.

The number after an arrow represents the number of successful compositions, while
that below a product sign represents the number of attempted compositions.

In the end, however, there remains the fact that even in a distinctive categoriza-
tion the most frequently used word form of German, der, has three different cate-
gories.6 From the viewpoint of computational linguistics, this remarkable fact can be
handled by means of either three different lexical entries with equal surfaces, as in
15.2.3, or one lexical entry with one surface and three alternative categories, as in
15.2.4. The latter is the so-called multicat notation first explored in the LAP-system
(15.1.5).

6 This is commented on by Jespersen (1921), pp. 341–346.
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15.2.3 REPRESENTING LEXICAL READINGS VIA DIFFERENT ENTRIES

[der (e′ mn′ s3) def-art]
[der (en′ f′ g&d) def-art]
[der (en′ p–d′ g) def-art]

15.2.4 REPRESENTING LEXICAL READINGS VIA MULTICATS

[der ((e′ mn′ s3) (en′ f′ g&d) (en′ p–d′ g)) def-art]

The multicat solution has the advantage that only one lexical lookup is necessary. Fur-
thermore, instead of branching immediately into three different parallel paths of syn-
tactic analysis, the alternatives coded in the multicat may be processed in one branch
until the result segments come into play. There are many other lexical phenomena,
e.g., separable and nonseparable prefixes of German verbs (14.1.6), for which multi-
cats provide a simplification of lexical description and syntactic analysis.

The use of multicats requires that format and implementation of the combi rules
in morphology and syntax be extended to handle the alternatives coded in the new
kind of categories. On the one hand, such an extension of the combi rules capabili-
ties leads to a version of LA Grammar which differs from the original LAP-system
as defined for the algebraic definition. On the other hand, an LA Grammar using
multicats can always be reformulated as one in the original format using several
lexical readings. Thus, the use of multicats is a subtheoretical variant and does not
change the theoretical status as compared to a corresponding version without multi-
cats.

15.3 Building Corpora

The empirical testing of a grammar system requires the building of corpora which
represent the natural language to be analyzed in terms of a suitable collection of sam-
ples. Depending on which aspect of a language is to be documented by a corpus, the
samples may consist of printed prose, transcribed dialogue, speeches, personal letters,
theater plays, etc., either pure or mixed according to some formula. The samples may
be collected either diachronically for a longer period of time or strictly synchronically
(usually restricted to samples from a certain domain in a given year).

For German, the first comprehensive frequency analysis was presented 1897/1898
by Wilhelm Kaeding (Meier 1964), intended as a statistical basis for improving
stenography. With his small army of ‘Zählern’ (people who count) Kaeding analyzed
texts comprising almost 11 million running word forms (= 20 million syllables) and
250 178 different types.7 In contrast to the synchronic corpora of today, Kaeding’s
collection of texts was designed to cover the German language from 1750 to 1890.

7 The size of Kaeding’s (1897/1898) corpus was thus more than ten times larger and the num-
ber of types twice as large as that of the computer-based 1973 Limas-Korpus (see below).
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The arrival of computers provided a powerful tool for new investigations of this
kind. Kučera and Francis (1967) took the lead with the Brown corpus8 for American
English. The Brown corpus comprises 500 texts of 1 014 231 running word forms
(tokens) and 50 406 different types.

In 1978 there followed the LOB Corpus9 for British English. Designed as a coun-
terpart to the Brown corpus, it consists of 500 texts, about one million tokens,
and 50 000 types. Both corpora were compiled from texts of the following 15 gen-
res:

15.3.1 TEXT GENRES OF THE BROWN AND THE LOB CORPUS

Brown LOB
A Press: reportage 44 44
B Press: editorial 27 27
C Press: reviews 17 17
D Religion 17 17
E Skills, trade, and hobbies 36 38
F Popular lore 48 44
G Belle lettres, biography, essays 75 77
H Miscellaneous (government documents,

foundation records, industry reports, etc.) 30 38
J Learned and scientific writing 80 80
K General fiction 29 29
L Mystery and detective fiction 24 24
MScience fiction 6 6
N Adventure and western fiction 29 29
P Romance and love story 29 29
R Humor 9 9

Total 500 500

The numbers on the right indicate how many texts were included from the genre in
question, indicating slight differences between the Brown and the LOB corpus.

For building the Brown corpus, Kučera and Francis (1967), p. xviii, formulated the
following desiderata:

8 Named after Brown University in Rhode Island, where Francis was teaching at the time.
9 The Lancaster-Oslo/Bergen corpus was compiled under the direction of Leech and Johann-

son. Cf. Hofland and Johannson (1980).
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15.3.2 DESIDERATA FOR THE CONSTRUCTION OF CORPORA

1. Definite and specific delimitation of the language texts included, so that scholars
using the Corpus may have a precise notion of the composition of the material.

2. Complete synchronicity; texts published in a single calendar year only are in-
cluded.

3. A predetermined ratio of the various genres represented and a selection of indi-
vidual samples through a random sampling procedure.

4. Accessibility of the Corpus to automatic retrieval of all information contained in
it which can be formally identified.

5. An accurate and complete description of the basic statistical properties of the
Corpus and of several subsets of the Corpus with the possibility of expand-
ing such analysis to other sections or properties of the Corpus as may be re-
quired.

These desiderata are realized using the mathematical methods of statistics, i.e., the ba-
sic equations of stochastics, distributions of independent and dependent frequencies,
normalization, computing the margin of error, etc. The goal is to find a theoretical
distribution which corresponds to the empirical distribution (invariance of empirical
distribution proportions).

The German counterpart to the American Brown Corpus (1967) and the British LOB
Corpus (1978) is the Limas Corpus (1973).10 Like its English analogs, it consists of
500 texts, each containing roughly 2 000 running word forms, amounting to a total of
1 062 624 tokens. Due to the richer morphology of German, the number of types is
110 837, i.e., more than twice that of the corresponding English corpora.

The selection of genres and amounts in 15.3.1 is intended to make the corpora as
representative and balanced as possible.11 Intuitively these two notions are easy to
understand. For example, the editions of a daily newspaper in the course of a year
are more representative for a natural language than a collection of phone books or
banking statements. And a corpus containing texts from different genres in relative
proportions like those indicated in 15.3.1 is better balanced than one which consists
of texts from one genre alone.

It is difficult, however, to prove a specific quantification like that of 15.3.1 as ‘rep-
resentative’ and ‘balanced’. According to Oostdijk (1988)

‘genre’ is not a well-defined concept. Thus genres that have been distinguished so
far have been identified on a purely intuitive basis. No empirical evidence has been
provided for any of the genre distinctions that have been made.

10 See Hess et al. (1983).
11 Cf. Bergenholtz (1989), Biber (1993), Oostdijk and de Haan (1994).
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A representative and balanced corpus ultimately requires knowledge of which gen-
res are used and how often in a given time interval by the language community, in
writing and reading as well as speaking and hearing. Because it is next to impossi-
ble to realistically determine the correlation of production and reception in written
and spoken language in various genres, the building of representative and balanced
corpora is more an art than a science. It is based largely on general common sense
considerations. Moreover, it depends very much on the purpose for which the corpus
is intended.12

Today, corpora of one million running word forms are considered far too small for
valid natural language statistics. The British National Corpus (BNC), available online
since 1995, has a size of 100 million running word forms. Of these, 89.7 million
running word forms and 659 270 types13 are of written language, while 10.34 million
running word forms are of spoken language.

15.4 Distribution of Word Forms

The value of a corpus does not reside in the content of its texts, but in its quality as a
realistic sample of a natural language.14 The more representative and balanced the set

12 The difficulties of constructing balanced and representative corpora are avoided in ‘oppor-
tunistic corpora,’ i.e., text collections which contain whatever is easily available. The idea
is that the users themselves construct their own corpora by choosing from the opportunistic
corpus specific amounts of specific kinds of texts needed for the purpose at hand. This re-
quires, however, that the texts in the opportunistic corpus are preprocessed into a uniform
format and classified with respect to their domain, origin, and various other parameters
important to different users.

For example, a user must be able to automatically select a certain year of a newspaper,
to exclude certain sections such as private ads, to select specific sections such as the sports
page, the editorial, etc. To provide this kind of functionality in a fast growing opportunis-
tic corpus of various different kinds of texts is labor-intensive – and therefore largely left
undone.

With most of the corpus work left to the users, the resulting ‘private corpora’ are usually
quite small. Also, if the users are content with whatever the opportunistic corpus makes
available, the lexically more interesting domains like medicine, physics, law, etc., will be
left unanalyzed.

13 The following type numbers refer to the surfaces of the word forms in the BNC. The
numbers published by the authors of the BNC, in contrast, refer to tagged word forms
(Sect. 15.5). According to the latter method of counting, the BNC contains 921 073
types.

The strictly surface-based ranking underlying the table 15.4.2 was determined by Marco
Zierl at the CL lab of Friedrich Alexander University Erlangen Nürnberg (CLUE).

14 A language should be continuously documented in corpus linguistics. This may be done
by building a reference corpus for a certain year. Then each following year, a monitor
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of samples, the higher the value of the corpus for computing the frequency distribution
of words and word forms in the language.

On the most basic level, the statistical analysis is presented as a frequency list
and an alphabetic list of word forms, illustrated in 15.5.1 and 15.5.3, respectively.
In the frequency list, the types of the word forms are ordered in accordance with
their token frequency. The position of a word form in the frequency list is called its
rank.

At the beginning of the BNC frequency list, for example, the top entry is the
word form the. It occurs 5 776 399 times and comprises 6.4 % of the running
word forms (tokens). The low end of the list, on the other hand, contains the
word forms which occur only once in the corpus. These are called hapax legome-
na.15 There are 348 145 hapax legomena in the BNC – amounting to 52.8 % of its
types.

Word forms with the same frequency, such as the hapax legomena, may be collected
into frequency classes (F-classes). An F-class is defined in terms of two parameters,
(i) the characteristic frequency of the F-class types in the corpus and (ii) the number
of types with that frequency.

15.4.1 DEFINITION OF THE NOTION FREQUENCY CLASS (F-CLASS)

F-class =def [frequency of types # number of types]

The number of types in an F-class is the interval between the highest and the lowest
rank of its elements (15.4.2).

The number of tokens corresponding to an F-class equals the product of its type
frequency and its type number. For example, because there are 39 691 word forms
(types) which each occur three times in the BNC, the resulting F-class [3 # 39 691]
corresponds to a total of 119 073 (= 3 · 39 691) tokens.

There are much fewer F-classes in a corpus than ranks. In the BNC, for example,
655 270 ranks result in 5 301 F-classes. Thus, the number of the F-classes amounts to
only 0.8 % of the number of ranks. Because of their comparatively small number, the
F-classes are well suited to bringing the type/token correlation into focus.

The frequency distribution in the BNC is illustrated below for 27 F-classes – nine at
the beginning, nine in the middle, and nine at the end.

corpus is built, showing the changes in the language. The reference corpus and the monitor
corpora must be based on the same structure. They should consist of a central part for
mainstream, average language, as in daily newspapers and other genres, complemented
by domain-specific parts for medicine, law, physics, etc., which may be compiled from
associated journals.

15 From Greek, ‘said once.’
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15.4.2 TYPE/TOKEN DISTRIBUTION IN THE BNC (surface-based)

For each F-class the associated rank interval is specified (start_r to end_r). The first
nine F-classes each contain only one type, for which reason they each cover only
0.000152 % (= 100 : 659 270) of the types, which adds up to 0.001368 %. The tokens
corresponding to these classes, on the other hand, cover 21.895 % of the running
word forms of the BNC. The earliest F-class containing more than one type is located
between F-classes 3 500 and 4 000. The nine F-classes at the end contain types which
occur only one to nine times in the BNC. Together, they cover only 1.2 % of the
running word forms, but they comprise 83.6 % of the types.

In other words, 16.4 % of the types in the BNC suffice to cover 98.8 % of the
running word forms. Conversely, the remaining 1.2 % of the running word forms
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require 83.6 % of the types. This corresponds to the interval between rank 659 269
and 108 154, which represents 551 115 types.

The distribution of type and token frequency characterized in 15.4.2 is found gener-
ally in corpora of natural language. It may be shown graphically as follows:

15.4.3 CORRELATION OF TYPE AND TOKEN FREQUENCY

The fact that 0.001 % of the types cover almost 22 % of the tokens, and that 16 % of
the types cover more than 98 % of the tokens in a corpus, is sometimes misinterpreted
as meaning that the small lexica of today’s systems of speech recognition (Sect. 1.4)
are quite sufficient for practical purposes. This, however, is a serious mistake, because
the semantic significance of a word increases with decreasing frequency.

For example, the user is benefited little by a system of automatic word form recogni-
tion which can lexically recognize the, of, and, and to, but misses on significant BNC
hapax legomena like audiophile, butternut, customhouse, or dustheap, to mention only
a few, all of which are listed and analyzed in a traditional lexicon like Webster’s New
Collegiate Dictionary.

In addition, there are many significant words contained in a traditional lexicon, such
as aspheric, bipropellant, and dynamotor, which occur not even once in the BNC,
despite its size and its design as a representative, balanced corpus. Thus, the word
form list of a large corpus may help to update a traditional lexicon, but it should not
be expected to be equally or more complete.

The correlation of type and token frequency exemplified in 15.4.3 was described
most prominently by ZIPF (1902–1950) as a general law of nature.16 According
to Zipf (1935), the frequency distribution of types always follows roughly the same
pattern, independent of the text size, the text category, or the natural language, and
corresponds to the following formula:17

16 Also known as the Estoup-Zipf-Mandelbrot Law. The earliest observation of the phe-
nomenon was made by the Frenchman Estoup (1916), who – like Kaeding – worked on
improving stenography. After doing a statistical analysis of human speech at Bell Labs,
Condon (1928) also noted a constant relation between rank and frequency. Mandelbrot et al.
(1957), famous for his work on fractals, worked on mathematical refinements of Zipf’s Law.
Cf. Piotrovskij et al. (1985).

17 Criticized, among others, by Joos (1936) on empirical grounds. See also the reply in Zipf
(1949).



304 15. Corpus Analysis

15.4.4 ZIPF’S LAW

frequency · rank = constant

I.e., the frequency of a given word multiplied by its rank produces a number which is
roughly the same as the product of rank and frequency of any other word in the text.18

15.4.5 ILLUSTRATION OF ZIPF’S LAW

This shows that Zipf’s law holds only roughly, in the sense of the same order of magni-
tude. To compensate for the curve-like increase and to achieve a better approximation
of a constant, logarithmic modifications of the formula have been proposed.19

Zipf explained the correlation of frequency and rank he observed in texts as the
law of least effort. According to Zipf, it is easier for the speaker-hearer to use a
few word forms very frequently than to use the total of all word forms equally of-
ten. Zipf observed furthermore that the word forms used most frequently are usu-
ally the shortest and that as words get longer their frequency decreases. Zipf also
pointed out that the semantic significance of word forms increases with decreasing
frequency.

15.5 Statistical Tagging

In the beginning of computational corpus analysis, no systems of automatic word form
analysis with sufficient data coverage were available. Therefore corpus analysis was
initially purely letter-based. The objects investigated were unanalyzed word forms,
i.e., sequences of letters between spaces in the online text.

Most online texts contain not only word forms, however, but also a large number of
special symbols, such as markups for headlines, footnotes, etc., for example in XML
or some other convention, as well as punctuation signs, quotation marks, hyphens,
numbers, abbreviations, etc. In order for the statistical analysis of word forms to be
linguistically meaningful, these special symbols must be interpreted and/or eliminated
by a preprocessor.

18 For simplicity, this example is based on the BNC data. Strictly speaking, however, Zipf’s
law applies only to individual texts and not to corpora.

19 The plot of log(frequency) (y axis) vs. log(rank) (x axis) approximates a straight line of
slope −1.
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The statistical analysis of properly preprocessed online texts results in tables of
word forms which specify their frequency relative to the total corpus and usually also
relative to its genres. This is illustrated by the frequency list of the Brown Corpus.

15.5.1 TOP OF BROWN CORPUS FREQUENCY LIST

69971-15-500 THE 21341-15-500 IN
36411-15-500 OF 10595-15-500 THAT
28852-15-500 AND 10099-15-485 IS
26149-15-500 TO 9816-15-466 WAS
23237-15-500 A 9543-15-428 HE

The entry 9543-15-428 HE, for example, indicates that the word form HE occurs
9 543 times in the Brown corpus, in all 15 genres, and in 428 of the 500 sample texts.

What is missing, however, is the categorization and lemmatization of the word
forms. To fill this gap at least partially, Francis (1980) developed TAGGIT, a pattern-
based system of categorization which required a lot of post-editing. Building from
there (Marshall 1987, pp. 43f.), the CLAWS1-system was developed by Garside et al.
(1987), who tried to induce the categorization from the statistical distribution of word
forms in the texts. This statistically based tagging was developed in part for getting
better and quicker results for large corpora than pattern matching.

Statistical tagging is based on categorizing by hand – or half automatically with
careful post-editing – a small part of the corpus, called the core corpus. The categories
used for the classification are called tags or labels. Their total is called the tagset.

The choice of a specific tagset20 is motivated by the goal of maximizing the statis-
tical differentiation of transitions from one word form to the next (bigrams). For this
reason the tagging of the BNC core corpus is based on an especially large tagset, called
the enriched (C7) tagset, which comprises 139 tags (without punctuation marks).

After hand-tagging the core corpus, the probabilities of the transitions from one
word form to the next are computed by means of Hidden Markov Models (HMMs).21

Then the probabilities of the hand-tagged core corpus are transferred to the whole cor-
pus using a simplified tagset. In the BNC this basic (C5) tagset comprises 61 labels.

15.5.2 SUBSET OF THE basic (C5) tagset

AJ0 Adjective (general or positive) (e.g., good, old, beautiful)
CRD Cardinal number (e.g., one, 3, fifty-five, 3609)
NN0 Common noun, neutral for number (e.g., aircraft, data, committee)
NN1 Singular common noun (e.g., pencil, goose, time, revelation)
NN2 Plural common noun (e.g., pencils, geese, times, revelations)

20 The consequences of the tagset choice on the results of the corpus analysis are mentioned
in Greenbaum and Yibin (1994), p. 34.

21 The use of HMMs for the grammatical tagging of corpora is described in, e.g., Leech et al.
(1983), Marshall (1983), DeRose (1988), Sharman (1990), Brown et al. (1991, 1992). See
also Church and Mercer (1993).
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NP0 Proper noun (e.g., London, Michael, Mars, IBM)
UNC Unclassified items
VVB The finite base form of lexical verbs (e.g., forget, send, live, return)
VVD The past tense form of lexical verbs (e.g., forgot, sent, lived, returned)
VVG The -ing form of lexical verbs (e.g., forgetting, sending, living, returning)
VVI The infinitive form of lexical verbs (e.g., forget, send, live, return)
VVN The past participle form of lexical verbs (e.g., forgotten, sent, lived, returned)
VVZ The -s form of lexical verbs (e.g., forgets, sends, lives, returns)

Once the whole corpus has been tagged in the manner described, the frequency
counts may be based on tagged word forms rather than letter sequences. Thereby
different instances of the same surface with different tags are treated as different types.
This is shown by the following example, which was selected at random from the
tagged BNC list available online in 1997.

15.5.3 ALPHABETICAL WORD FORM LIST (SAMPLE FROM THE BNC)

1 activ nn1-np0 1 8 activating aj0-nn1 6
1 activ np0 1 47 activating aj0-vvg 22
2 activa nn1 1 3 activating nn1-vvg 3
3 activa nn1-np0 1 14 activating np0 5
4 activa np0 2 371 activating vvg 49
1 activatd nn1-vvb 1 538 activation nn1 93
21 activate np0 4 3 activation nn1-np0 3
62 activate vvb 42 2 activation-energy aj0 1
219 activate vvi 116 1 activation-inhibition aj0 1
140 activated aj0 48 1 activation-synthesis aj0 1
56 activated aj0-vvd 26 1 activation. nn0 1
52 activated aj0-vvn 34 1 activation/ unc 1
5 activated np0 3 282 activator nn1 30
85 activated vvd 56 6 activator nn1-np0 3
43 activated vvd-vvn 36 1 activator/ unc 1
312 activated vvn 144 1 activator/ unc 1
1 activatedness nn1 1 7 activator/tissue unc 1
88 activates vvz 60 61 activators nn2 18
5 activating aj0 5 1 activators np0 1

Each entry consists (i) of a number detailing the frequency of the tagged word form in
the whole corpus, (ii) the surface of the word form, (iii) the label, and (iv) the number
of texts in which the word form was found under the assigned label. Alternatively to
the alphabetical order, the entries may be ordered according to frequency, resulting in
the BNC frequency list.

15.5.3 illustrates the output of the statistical tagger CLAWS4, which was developed
for analyzing the BNC and is generally considered one of the best statistical taggers.
The error rate22 of CLAWS4 is quoted by Leech (1995) at 1.7 %, which at first glance
may seem like a very good result.

22 Unfortunately, neither Leech (1995) nor Burnard (ed.) (1995) specify what exactly consti-
tutes an error in tagging the BNC. A new project to improve the tagger was started in June
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This error rate applies to the running word forms, however, and not to the types. If
we take into consideration that the last 1.2 % of the low frequency tokens requires
83.6 % of the types (15.4.2, 15.4.3), an error rate of 1.7 % may also represent a very
bad result – namely that about 90 % of the types are not analyzed or not analyzed
correctly. This conclusion is borne out by a closer inspection of the sample 15.5.3.

The first surprise is that of 38 entries, 27 are categorized more than once, namely
activ (2), activa (3), activate (3), activated (7), activating (6), ac-
tivation (2), activator (2), and activators (2). Thereby, activ – which
is a typing error – is classified alternatively as nn1-np0 and np0, neither of which
makes any sense linguistically. The classification of activate as np0 is also mis-
taken from the viewpoint of traditional English dictionaries. The typing error ac-
tivatd is treated as well-formed and labeled nn1-vvb. In activation. the
punctuation sign is not removed by the preprocessor, yet it is labeled nn0. In acti-
vation/ and activator/ the ‘/’ is not interpreted correctly and they are labeled
unc (for unclassified), whereby the identical entries for activator/ are counted
separately.

In addition to having a high error rate, the frequency counts of the BNC analysis
are impaired by a weak preprocessor. For example, by treating different numbers as
different word forms, as in

1 0.544 crd 1
1 0.543 crd 1
1 0.541 crd 1

58 477 additional types are produced, which is 6.3 % of the labeled BNC types. In
addition, there are more than 20 000 types resulting from numbers preceded by mea-
suring units like &pound (11 706) and &dollar (8 723). Furthermore, word-form-
initial hyphens and sequences of hyphens are counted as separate word forms, pro-
ducing another 4 411 additional types, which are moreover labeled incorrectly.

Thus, statistical labeling increases the number of types from 659 270 surfaces to
921 074 labeled BNC forms. A proper preprocessing of numbers and hyphens would
reduce the number of surface types by an additional 83 317 items to 575 953. All in
all, statistical tagging increases the number of types in the BNC by at least 37.5 %.

The BNC tagging analysis is a typical example of the strengths and weaknesses
of a smart solution (Sect. 2.3). On the positive side there is a comparatively small
effort as well as robustness, which suggests the use of statistical taggers at least in
the preparatory phase of building a solid system of automatic word form recognition.
On the negative side there are the following weaknesses, which show up even more
clearly in languages with a morphology richer than English.

1995, however. Called ‘The British National Corpus Tag Enhancement Project’, its results
were originally scheduled to be made available in September 1996. Instead, it was appar-
ently superseded by the massive manual postediting effort published as the BNC XML
edition (Burnard (ed.) 2007).
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15.5.4 WEAKNESSES OF STATISTICAL TAGGING

1. The categorization is too unreliable to support rule-based syntactic parsing.
2. Word forms can neither be reduced to their base forms (lemmatization) nor seg-

mented into their allomorphs or morphemes.
3. The overall frequency distribution analysis of a corpus is distorted by an artificial

inflation of types by more than one third.

It is in the nature of statistical tagging that the classification of a surface be based
solely on statistical circumstances.23 Thus, if it turns out that a certain form has been
classified incorrectly by a statistical tagger, there is no way to correct this particular
error. Even if the tagger is successfully improved as a whole, its results can never be
more than probabilistically based conjectures.

The alternative solid solution is a rule- and lexicon-based system of automatic word
form recognition. If a word form is not analyzed or is not analyzed correctly in such a
system, then the cause is either a missing entry in the lexicon or an error in the rules.
The origin of the mistake can be identified and corrected, thus solidly improving the
recognition rate of the system.

In addition, the rule-based analysis makes it possible to extend the frequency anal-
ysis from letter-based word forms to words and their parts. This is of interest in con-
nection with hapax legomena (i.e., about half of the types). For statistics, the hapax
legomena constitute the quasi-unanalyzable residue of a corpus. A rule-based ap-
proach, in contrast, can not only analyze hapax legomena precisely, but can reduce
their share at the level of elementary base forms by half. In the Limas corpus, for
example, word forms like Abbremsung, Babyflaschen, and Campingplatz are hapax
legomena, but their parts, i.e., bremse, baby, flasche, camping, and platz, occur more
than once.

Exercises

Section 15.1
1. What is the definition of a grammar system?
2. What is the function of the formal algorithm in a grammar system?
3. Why does a grammar system require more than its formal algorithm?
4. Why must a grammar system be integrated into a theory of language?

23 It is for this reason that a surface may be classified in several different ways, depending on
its various environments in the corpus.
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5. Explain the methodological reason why a grammar system must have an efficient
implementation on the computer.

6. Why is a modular separation of grammar system, implementation, and applica-
tion necessary? Why do they have to be closely correlated?

7. What differences exist between the various implementations of LA Morph, and
what do they have in common?

Section 15.2
1. Explain the linguistic motivation of a distinctive categorization, using examples.
2. What are multicats and why do they necessitate an extension of the basic algo-

rithm of LAG?
3. Compare list-based and attribute-based matching in LA Morph.
4. What motivates the development of subtheoretical variants?
5. Why is the transition to a new subtheoretical variant labor-intensive?
6. What is the difference between a subtheoretical variant and a derived formalism?

Section 15.3
1. For which purpose did Kaeding investigate the frequency distribution of Ger-

man?
2. What is a representative, balanced corpus?
3. List Kučera and Francis’ desiderata for constructing corpora.
4. Explain the distinction between the types and the tokens of a corpus.

Section 15.4
1. Describe the correlation of type and token frequency in the BNC.
2. What is the percentage of hapax legomena in the BNC?
3. In what sense are high frequency word forms of low significance and low fre-

quency word forms of high significance?
4. What is Zipf’s law?

Section 15.5
1. What motivates the choice of a tagset for statistical corpus analysis?
2. Why is it necessary for the statistical analysis of a corpus to tag a core corpus by

hand?
3. What is the error rate of the statistical BNC tagger CLAWS4? Does it refer to

types or tokens? Is it high or low?
4. Why does statistical tagging substantially increase the number of types in a cor-

pus? Are these additional types real or spurious?
5. Is statistical tagging a smart or a solid solution?
6. What is the role of the preprocessor in the outcome of the statistical analysis of

a corpus? Explain your answer using concrete examples.



16. Basic Concepts of Syntax

This and the following two chapters describe the grammar component of syntax. Sec-
tion 16.1 analyzes the structural border between the grammar components of morphol-
ogy and syntax. Section 16.2 discusses the role of valency in the syntactic-semantic
composition of natural languages. Section 16.3 explains the notions of agreement and
the canceling of valency positions by compatible valency fillers. Section 16.4 demon-
strates the handling of free word order with an LA Grammar for a small fragment
of German. Section 16.5 demonstrates the handling of fixed word order with an LA
Grammar for a corresponding fragment of English.

16.1 Delimitation of Morphology and Syntax

The grammar component of morphology is limited to the analysis of individual word
forms, but provides the basis for their syntactic composition in terms of their mor-
phosyntactic categorization. The grammar component of syntax is limited to char-
acterizing the composition of word forms into complex expressions, but depends on
their morphological analysis.

Thus, the structural boundary between the morphology and syntax coincides with
the boundaries between the word forms in the sentence surface: everything within a
word form boundary is in the domain of morphology, while everything dealing with
the composition of word forms is in the domain of syntax.

16.1.1 TIME-LINEAR INTERACTION OF LA MORPHOLOGY AND LA SYNTAX

R. Hausser, Foundations of Computational Linguistics,
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The tree structures of LA Morphology and LA Syntax each satisfy the SLIM princi-
ples of surface compositionality (S) and time-linear composition (L). However, the
time-linear adding of a complex word form like over+indulg+er+s in the syntax
(dashed lines) presupposes its prior time-linear composition in morphology (dotted
lines).

Thus, even though LA Morphology and LA Syntax are based on the same structural
principles, their components are separated in a modular fashion1 because their respec-
tive time-linear compositions occur in different phases. This particular correlation of
syntactic and morphological composition is in concord with the traditional view ac-
cording to which complex morphological structures originate historically as “frozen
syntactic structures” (Paul 1920, Chap. 19).

The separation of LA Morphology and LA Syntax poses no problem even in border-
line cases such as idioms. Critical cases can be handled either lexico-morphologically
or syntactically because both components show the same time-linear composition of
surfaces and meanings1. Which grammar component is appropriate should be deter-
mined by the structural properties of the phrase in question.

For example, the phrase over-the-counter should be handled in the lexicon, because
its use as a unit and its lack of internal variation is expressed orthographically by
hyphenation. The variant without the hyphens, on the other hand, should be handled
in the syntax.

In German, a phrase like gang und gäbe2 may at first glance seem to belong in the
syntax because the phrase is written as three separate words. However, this particular
use of gäbe is like a like a bound morpheme (13.3.4) because it may not occur in-
dependently. Therefore the phrase should be handled in the lexicon. Technically, this
may be achieved by an internal representation as gang_und_gäbe, treating the phrase
as a single word form for the purposes of syntax.

A syntactic treatment is generally motivated in idioms which (i) retain their compo-
sitional (Fregean) meaning1 as an option, (ii) are subject to normal variations of word
order, and (iii) exhibit internal inflectional variation. As an example, consider Ger-
man seinen Hut nehmen, which literally means to take one’s hat, with the idiomatic
meaning of stepping down from office.

Because this phrase obeys word order variations, as in nachdem Nixon seinen Hut
genommen hatte, and shows internal inflectional variation, as in Nixon nahm seinen
Hut, a compositional treatment in the syntax is the most appropriate. The idiomatic use
can be handled by recording the paraphrase stepping down from office in the seman-
tic representation of nehmen. Whenever this verb is used, the semantic component

1 This is in contrast to the nativist variant of ‘generative semantics’, which used transfor-
mations to derive word form surfaces from syntactic deep structures, e.g., persuade from
cause to come about to intend (Lakoff 1972a).

2 Wahrig’s’s dictionary comments this phrase as “Adj.; nur noch in der Wendung . . . das ist
so üblich [≺ mhd. gäbe “annehmbar”; zu geben]”.
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checks whether the object is Hut. If this is the case, the pragmatic interpretation is
provided with the paraphrase stepping down from office as an option.

The nature of the morphology-syntax relation may be illuminated further by looking
at different kinds of natural languages. This topic belongs in the domain of language
typology, in which synthetic languages with a rich morphology are distinguished from
analytic languages with a rudimentary morphology.

According to Bloomfield (1933), modern Chinese is an analytic language in which
each word (form) is either a morpheme consisting of one syllable, or a compound, or a
phrase word. A synthetic language, on the other hand, is Eskimo, in which long chains
of morphemes are concatenated into a single word form such as [a:wlis-ut-iss?ar-si-
niarpu-na] I am looking for something suitable for a fish-line (op.cit., p. 207).

For Bloomfield the distinction between synthetic and analytic is relative, however,
insofar as one language can be more synthetic than another in one respect, yet more
analytic in another. As an alternative schema of classification he cites the isolating,
agglutinative, polysynthetic, and inflectional kinds of morphology:

Isolating languages were those which, like Chinese, used no bound forms; in agglu-
tinative languages the bound forms were supposed to follow one another, Turkish
being the stock example; polysynthetic languages expressed semantically important
elements, such as verbal goals, by means of bound forms, as does Eskimo; inflec-
tional languages showed a merging of semantically distinct features either in a single
bound form or in closely united bound forms, as when the suffix ō in a Latin form
like amō ‘I love’ expresses the meanings ‘speaker as actor,’ ‘only one actor,’ ‘action in
present time,’ ‘real (not merely possible or hypothetical) action.’ These distinctions
are not co-ordinate and the last three classes were never clearly defined.

Bloomfield (1933), p. 208

Despite the difficulties described,3 there remains the fact that some natural languages
build up meaning1 mainly in the syntax (e.g., Chinese) and others mainly in morphol-
ogy (e.g., Eskimo). This alternative exists also within a given natural language. For
example, in English the complex concept denoted by the word form overindulgers
may roughly be expressed analytically as people who eat and drink too much.

That meaning1 may be composed in morphology as well as in syntax provides no
argument against treating these components as separate modules. A reason for their
separation, on the other hand, is their being based on different principles of combi-
nation. Those of morphology are inflection, derivation, and compounding (13.1.2),
whereas those of syntax are the following:

16.1.2 COMBINATION PRINCIPLES OF SYNTAX

1. Valency (Sect. 16.2)
2. Agreement (Sect. 16.3)
3. Word order (Sect. 16.4 for German and 16.5 for English)

3 For an overview of morphological language typology see Greenberg (1954).
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In addition to these traditional combination principles there is the higher principle of
the left-associative (time-linear) derivation order, which underlies morphological and
syntactic composition alike – both in language production (speak mode, 5.4.2) and
language interpretation (hear mode, 5.4.1).

16.2 Valency

The notions valency carrier and valency filler go back to the French linguist Tesnière
(1959), who borrowed them from the field of chemistry. The valency positions of a
carrier must be filled, or canceled, by compatible fillers in order for an expression to
be syntactically and semantically complete.

Prototypical valency carriers in the natural languages are the verbs. The verb give,
for example, is a three-place carrier because each act of giving necessarily requires
(i) a giver, (ii) a receiver, and (iii) something that is given. Even though one may say
Susanne has given already in the context of a charity, it follows semantically that
there is something that Susanne gave and someone who received it.4

The LA Grammar-specific coding of valency positions and result segments in vari-
ous different valency carriers of German is illustrated by the following examples:

16.2.1 EXAMPLES OF DIFFERENT VALENCY CARRIERS IN GERMAN

– the one-place verb form schläfst (sleep):

The valency position s2′ indicates that this verb form requires a nominative of sec-
ond person singular. The result segment v shows that after filling the valency posi-
tion there results a complete verbal expression (sentence).

4 In addition to the basic valency structure of a word, natural languages allow special uses
with secondary valency structures. For example, the English verb to sleep is normally in-
transitive, but in the sentence This yacht sleeps 12 people it is used transitively. Thereby,
the change to the secondary valency structure is accompanied by a profound change in the
meaning of the word, which may be paraphrased as provide bunks for.

The number of valency positions may also be reduced (called Detransitivierung in Ger-
man). For example, give in German has a secondary use as a one-place – or arguably two-
place – valency carrier, as in Heute gibt es Spaghetti (= today gives it spaghetti/today
we’ll have spaghetti). Again, the secondary valency structure is accompanied by profound
changes in the original word meaning.

The phenomena of transitivization and detransitivization do not call a systematic anal-
ysis of valency structure into question. On the contrary, they throw additional light on the
fundamental importance of the valency structure in the analysis of natural language.
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– the two-place verb form liest (read):

The valency position s23′ indicates that this verb form requires a nominative of
second or third person singular. The additional valency position a′ indicates that
this form requires an additional accusative in order to result in a complete sen-
tence. Specification of the case ensures that ungrammatical oblique fillers, such as
a dative or a genitive, are excluded. For example, Der Mann liest einen Roman is
grammatical while *Der Mann liest einem Roman is not.

– the two-place verb form hilft (help):

The oblique valency position d′ indicates that this form requires a dative (in addition
to the nominative). Non-dative valency fillers, as in *Der Mann half die Frau, are not
grammatical.

– The three-place verb form gebt (give):

The valency position p2′ indicates that this form requires a nominative of second
person plural. The oblique valency positions d′ and a′ indicate the need for addi-
tional dative and accusative valency fillers.

– The three-place verb form lehrte (taught):

The valency position s13′ indicates that this verb form requires a nominative of
first or third person singular. The two oblique valency positions a′ indicate the need
for two additional accusative valency fillers. Because of this valency structure Der
Vater lehrte mich das Schwimmen is grammatical while *Der Vater lehrte mir das
Schwimmen is not.

– The one-place preposition nach (after):
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The preposition nach requires a dative noun phrase as argument, as indicated by the
valency position d′. The result segment adp (for ad-phrase) expresses that filling
the valency position results in an expression which functions as an adverbial or
adnominal modifier (12.5.4–12.5.6).

As shown by the last example, there are other valency carriers besides verbs in the
natural languages, such as prepositions and determiners (15.2.1).

In LA Grammars for natural languages, the syntactic categories have at least one
category segment – in contrast to LA Grammars for artificial languages, which also
use empty lists as categories, especially in final states (e.g., 10.2.2, 10.2.3, 11.5.2,
11.5.4, 11.5.7). Syntactic categories consisting of one segment can serve only as va-
lency fillers or as modifiers, e.g.:

[Bücher (p-d) buch] (books)
[ihm (d) er] (him)
[gestern (adv) gestern] (yesterday)

Valency carriers may also function as valency fillers using their result segment, e.g.,
v, as the filler segment. In this case, the segments representing valency positions are
attached at the beginning of the category resulting from the composition.

16.3 Agreement

The second combination principle of natural language syntax besides valency is agree-
ment. Agreement violations are among the most obvious and most serious grammat-
ical mistakes one can make in a natural language, even though the intended mean-
ing of the utterance is usually not really jeopardized. Consider the following exam-
ple:

16.3.1 AGREEMENT VIOLATION IN ENGLISH

*Every girls need a mother.

In grammatical expressions, agreement interacts with valency in that a potential va-
lency filler can only cancel a structurally compatible valency position.

As a simple example of the functional interaction between a valency carrier
and compatible fillers consider the following analysis of the sentence he gives
her this, which shows the successive filling (canceling) of valency positions in a
left-associative derivation. Agreement is shown by using the same letter for the
category segments representing (i) the valency position and (ii) the associated
filler:
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16.3.2 A SIMPLE ANALYSIS IN LA SYNTAX

The bottom-up left-associative derivation order (10.1.6) is represented as a tree struc-
ture growing downward from the terminal string (input).5 The step-by-step canceling
of valency positions is specified in the category of the sentence start, which shows at
each step how many valency positions remain to be filled.

A maximally simple LA Grammar for the derivation is LA plaster.6 On the positive
side, it is written just like the LA Grammars for artificial languages in Chaps. 10–12.
On the negative side, it is intentionally primitive insofar as no variables are used in
the rule patterns.

16.3.3 AN LA GRAMMAR FOR 16.3.2 (LA plaster)

LX =def { [he (s3) *], [her (d) *], [this (a) *], [gives (s3′ d′ a′ v) *]}

STS =def { [(s3) {MAIN+FV} ] }
MAIN+FV: (s3) (s3’ d’ a’ v) ⇒ (d’ a’ v) {FV+MAIN1}
FV+MAIN1: (d’ a’ v) (d) ⇒ (a’ v) {FV+MAIN2}
FV+MAIN2: (a’ v) (a) ⇒ (v) { }
STF =def { [(V) rpFV+MAIN2 ] }

For simplicity, the lexicon LX is defined as a word form lexicon (13.5.1). In this way
the grammar is independent of a component of automatic word form recognition. LX
contains only the word forms occurring in the example.7

5 This format corresponds to the derivation structure (iii) in 10.3.1 as well as the automatic
parsing analyses 10.3.2, 10.4.1, 10.5.3, 10.5.4, and 10.5.5. The equivalent format of LA
trees growing upward from the terminal string, illustrated in 10.5.2 and 16.1.1, on the other
hand, has served only for the comparison with corresponding constituent structures, and is
of no further use.

6 In German, this grammar is called LA Beton. The English translation of Beton as concrete
has a misleadingly positive ring, hence the name LA Plaster.

7 The third position is indicated by a ‘*’ because the base forms are not referred to by the
rules.
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According to the start state STS , the derivation must begin with a word of category
(s3) and the rule MAIN+FV (main constituent plus finite verb). The input condition
of this rule requires that the sentence start must be of category (s3), which matches
he, and that the next word must be of category (s3′ d′ a′ v), which matches gives.
The categorial operation of MAIN+FV cancels the s3′ position in the valency carrier.
The result category (d′ a′ v) characterizes a sentence start which needs a dative and an
accusative in order to complete the semantic relation expressed by the verb. The rule
package of MAIN+FV activates the rule FV+MAIN1.

According to the input condition of FV+MAIN1, the sentence start must be of cat-
egory (d′ a′ v), which matches he gives, and the next word must be of category (d),
which matches her. The categorial operation of FV+MAIN1 cancels the d′ posi-
tion in the sentence start. The result category (a′ v) characterizes the new sentence
start he gives her as requiring an accusative in order to complete the semantic re-
lation expressed by the verb. The rule package of FV+MAIN1 activates the rule
FV+MAIN2.

According to the input condition of FV+MAIN2, the sentence start must be of cat-
egory (a′ v), which matches he gives her, and the next word must be of category
(a), which matches this. The categorial operation of FV+MAIN2 cancels the a′ po-
sition in the sentence start. The result category (v) characterizes the new sentence
start he gives her this as an expression which does not have any open valency posi-
tions. FV+MAIN2 activates the empty rule package. The final state STF character-
izes the output of FV+MAIN2 as a complete sentence of the ‘language’ described
by LA Plaster. At this point the derivation shown in 16.3.2 is completed success-
fully.

In an extended grammar, the sentence start he gives her this could be continued
further, for example by a concluding full stop, an adverb like now, a subordinate
clause like because she asked for it, or a conjoined clause like and she smiled hap-
pily. Thus, whether a given sentence start is a complete expression or not requires
not only that its analysis constitute a final state, but also that the surface be analyzed
completely.

Even though LA Plaster lacks the flexibility and generality that LA Grammars for
natural languages normally strive for, it is fully functional as a parser, strictly time-
linear, and descriptively adequate insofar as it accepts the example in 16.3.2. Fur-
thermore, because the input and output patterns of the rules refer to categories, the
grammar would analyze many additional sentences if the lexicon LX were extended
with additional word forms of the categories (s3), (d), (a), and (s3′ d′ a′ v), respec-
tively.

In all three combination steps of the example there is agreement between the filler
segment and the canceled valency position. In the first combination, s3′ is canceled
by s3, in the second, d′ by d, and in the third, a′ by a. Thus, agreement is formally
handled here as the identity of the filler segment and the associated valency position.
Violations of identity-based agreement show up clearly in the input categories.
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16.3.4 EXAMPLE OF AN ERROR IN IDENTITY-BASED AGREEMENT

That the first person pronoun I does not agree with gives is obvious at the level of
the respective categories because the filler segment s1 has no corresponding valency
segment in the carrier category (s3′ d′ a′ v).

16.4 Free Word Order in German (LA D1)

The third combination principle of natural language syntax besides valency and agree-
ment is word order. Just as natural languages may be distinguished typologically with
respect to their relative degree of morphological marking (specifying case, number,
gender, tense, verbal mood, honorifics, etc.), they may also be distinguished typolog-
ically with respect to their relative degree of word order freedom.

In natural language, grammatical functions may be coded by their morphology, by
means of function words, or by their word order. Furthermore, Greenberg (1963) ob-
served that languages with a rich morphology have a free word order, while languages
with a simple morphology have a fixed word order.

This is because the richer the morphology, the fewer grammatical functions are
left for the word order to express – allowing it to be free.8 Conversely, the simpler
the morphology, the more must grammatical functions be expressed by means of the
word order – thus limiting its freedom.

A language with a relatively free word order is German. The position of the verb is
fixed, but the order of fillers and modifiers is free. This is illustrated by a declarative
main clause with a three-place verb: the finite verb is fixed in second position, while
the three fillers allow six variations of word order.

16.4.1 WORD ORDER VARIATIONS IN A DECLARATIVE MAIN CLAUSE

Der Mann gab der Frau den Strauß.
(the man gave the woman the bouquet.)
Der Mann gab den Straußder Frau.
(the man gave the bouquet the woman.)
Der Frau gab der Mann den Strauß.
(the woman gave the man the bouquet.)
Der Frau gab den Straußder Mann.
(the woman gave the bouquet the man.)
Den Straußgab der Mann der Frau.
(the bouquet gave the man the woman.)
Den Straußgab der Frau der Mann.
(the bouquet gave the woman the man.)

8 This freedom is utilized for other aspects of communication, such as textual cohesion.
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These all translate into English as the man gave the woman the bouquet. Which vari-
ant is chosen by the speaker depends on the purpose and the circumstances of the
utterance context.9

In contrast to the grammatically correct examples, the following example is un-
grammatical because it violates the verb-second rule of declarative main clauses in
German.

16.4.2 WORD ORDER VIOLATION IN GERMAN

*Der Mann der Frau gab einen Strauß.
(the man the woman gave the bouquet.)

In LA Grammar, the free word order of German is formally captured by allowing
the canceling of arbitrary valency positions in the carrier category, and not just the
currently first segment.

16.4.3 FREE CANCELING OF VALENCY POSITIONS IN A CARRIER OF GERMAN

The arrow indicates the canceling of a valency position (marked by ′) by a suitable
(here identical) valency filler. Which of the available valency positions is to be can-
celed is decided here by the case-marked filler. In all three examples, the resulting sen-
tence start can be continued into a complete well-formed sentence, e.g., Den Strauß-
gab der Mann der Frau.

How can LA Plaster (16.3.3) be generalized in such a way that the free word order
characteristic of German declarative main clauses is handled correctly? The obvious
first step is to fuse FV+MAIN1 and FV+MAIN2 of LA Plaster into one rule.

16.4.4 GERMAN LA GRAMMAR WITH PARTIAL FREE WORD ORDER

LX =def { [er (s3) *], [ihr (d) *], [das (a) *], [gab (s3′ d′ a′ v) *]}
Variable definition: NP ∈ {d, a}, with NP′ correspondingly d′ or a′

X, Y = .?.?.?.? (i.e., an arbitrary sequence up to length 4)

9 Given the isolation of these variants from discourse contexts, some may seem less natural
than others. The reason for this, however, is not grammar, but that for some it is more
difficult to imagine utterance situations suitable for their topic-comment structures.
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STS =def { [(s3) {MAIN+FV} ] }
MAIN+FV: (s3) (s3′ d′ a′ v) ⇒ (d′ a′ v) {FV+MAIN}
FV+MAIN: (X NP′ Y v) (NP) ⇒ (X Y v) {FV+MAIN}
STF =def { [(V) rpFV+MAIN ] }

This extension of LA Plaster translates the English word form lexicon LX of 16.3.3
into German. Furthermore, the variables X, Y, and NP are used to fuse the rules
FV+MAIN1 and FV+MAIN2 of 16.3.3. The variables X and Y are unspecified,
standing for a sequence of zero, one, two, three, or four arbitrary category segments,
while NP is a specified variable, the range of which is explicitly limited to the category
segments d and a (see variable definition).

The variables in a rule are assigned values by matching the rule’s input patterns
with the input’s categories. Thereby the value for a given variable must be the same
throughout the rule, i.e., the variable is bound. Consider the following example:

16.4.5 FV+MAIN MATCHING A NEXT WORD ACCUSATIVE

On the level of the input, the sentence start has category (d′ a′ v) and the next word
has the category (a). Therefore, the next word variable NP at the level of the rule is
bound to the constant value a. Accordingly, everything preceding the a′ in the sentence
start category at the input level is matched by (and assigned to) the variable X – here
the sequence <d′> – while everything between the a′ and the v is matched by (and
assigned to) the variable Y – here the empty sequence < >. These bound variables,
together with the constant v, are used for building the output category – here (d′ v).
The categorial operation cancels the segment a′ in the sentence start category because
the variable NP′ does not occur in the output category pattern.

The new rule FV+MAIN of 16.4.4 generates and analyzes not only the variant er
gab das (ihr), but also er gab ihr (das) (i.e., the single sentence of LA Plaster, though
this time in German). The reason is that the input pattern of FV+MAIN accepts an
accusative (16.4.5) as well as a dative (16.4.6) after the verb:

16.4.6 FV+MAIN MATCHING A NEXT WORD DATIVE

The variable NP′ is bound to the category segment d′ for the duration of this rule ap-
plication because the next word category is d. Everything before the d′ in the sentence



322 16. Basic Concepts of Syntax

start is represented by X, while everything between the d′ and the v is represented
by Y. Thus, X is bound to the empty sequence < >, while Y is bound to the sequence
<a′>. With these bound variables the output of the rule application is specified.

Another important aspect of FV+MAIN in 16.4.4 as compared to 16.3.3 is the fact
that FV+MAIN calls itself via its rule package. This provides for a possible recursion
which can proceed as long as the categorial states of the input permit. For example,
the output of 16.4.6 fits the input pattern of FV+MAIN one more time:

16.4.7 REAPPLICATION OF FV+MAIN

After this second application of FV+MAIN, the category is not suitable for further ap-
plications. Thus the content of the current rule package provides options, but whether
these options are realized or not is controlled by the content of the current categories.

It is only a short step from the tentative LA Grammar 16.4.4 to an LA Grammar
which handles the syntactic structures in question simply and adequately.

16.4.8 GERMAN LA GRAMMAR WITH FREE WORD ORDER (LA D1)

LX =def { [er (s3) *], [ihr (d) *], [das (a) *], [gab (s3′ d′ a′ v) *]}

Variable definition: NP ∈ {s3, d, a}, with NP′ correspondingly s3′, d′ or a′
X, Y = .?.?.?.? (i.e., an arbitrary sequence up to length 4)

STS =def { [(NP) {MAIN+FV} ] }
MAIN+FV: (NP) (X NP′ Y v) ⇒ (X Y v) {FV+MAIN}
FV+MAIN: (X NP′ Y v) (NP) ⇒ (X Y v) {FV+MAIN}
STF =def { [(V) rpFV+MAIN ] }

Compared to the tentative LA Grammar 16.4.4, the range of the variable NP is ex-
tended to s3. While the rule FV+MAIN is unchanged, the rule MAIN+FV has a
new formulation: its input patterns now resemble those of FV+MAIN except that the
patterns for the sentence start and the next word are in opposite order.

The required verb second position is ensured in LA D1 by the start state which
activates only one initial rule, MAIN+FV, and by the fact that MAIN+FV is not
called by any other rule. The otherwise free word order of LA D1 is based on the
variables in the input patterns of MAIN+FV and FV+MAIN. Using the specified
word form lexicon, the following sentences can be analyzed/generated:

16.4.9 WORD ORDER VARIANTS OF LA D1

er gab ihr das das gab er ihr ihr gab er das
er gab das ihr das gab ihr er ihr gab das er
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LA D1 works also with an extended lexicon, such as the following:
[ich (s1) *], [du (s2) *], [wir (p1) *], [schlafe (s1′ v) *], [schläfst (s2′ v) *], [schläft
(s3′ v) *], [schlafen (p1′ v) *], [lese (s1′ a′ v) *], [liest (s2′ a′ v) *], [las (s3′ a′ v) *],
[helfe (s1′ d′ v) *], [hilfst (s2′ d′ v) *], [half (s3′ d′ v) *], [lehre (s1′ a′ a′ v) *], [lehrst
(s2′ a′ a′ v) *], [lehrt (s3′ a′ a′ v) *], [gebe (s1′ d′ a′ v) *], [gibst (s2′ d′ a′ v) *].

For empirical work, this ad hoc way of extending the lexicon should be replaced by
a general component of automatic word form recognition (Chaps. 13–15). For the
theoretical explanation of certain syntactic structures, however, the definition of small
word form lexica is sufficient.

After the indicated extension of the word form lexicon and extending the range of
NP to include the segments s1 and s2, LA D1 will also accept, e.g., ich schlafe:

16.4.10 IDENTITY-BASED SUBJECT-VERB AGREEMENT IN GERMAN

This example shows that the identity-based handling of agreement in LA D1 works
correctly for nominatives in different persons and numbers, and verbs with different
valency structures. Ungrammatical input like *ich schläfst will not be accepted:

16.4.11 AGREEMENT VIOLATION IN GERMAN

The handling of free word order in German is illustrated by the following derivation
of a declarative main clause with a topicalized dative (see 16.3.2 for comparison):

16.4.12 DERIVATION IN LA D1 (identity-based agreement)
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LA D1 handles agreement between the nominative and the finite verb in all possible
person-number combinations. Only valency fillers of the correct case are accepted.
Sentences with superfluous valency fillers, e.g., Susanne schläft das Buch, are re-
jected. If the rule name FV+MAIN is added to the (rule package of the) start state,
LA D1 is extended to yes/no-interrogatives, e.g., gab er ihr diesen. The tiny two-rule
grammar of LA D1 thus handles 18 different word order patterns of German.10

If the lexicon is extended to lexical ambiguities which lead to syntactic ambiguities
– as in sie mag sie, then these are presented correctly as multiple analyses by the
parser. Because LA Grammar computes possible continuations LA D1 can be used
equally well for analysis and generation, both in the formal sense of Sect. 10.4 and
the linguistic sense of language production described in Sect. 5.4. Because LA D1 has
no recursive ambiguities it is a C1 LAG and parses in linear time.

LA D1 exemplifies a syntactic grammar system (Sect. 15.1) called LA Syntax. As
an algorithm, LA Syntax uses C LAGs. As a linguistic method, LA Syntax uses tra-
ditional syntactic analysis in terms of valency, agreement, and word order – with the
additional assumption of a strictly time-linear derivation order.

16.5 Fixed Word Order in English (LA E1)

As in all natural languages, the verbs of English have an inherent valency structure.
For example, by assigning the verb form gave the category (n′ d′ a′ v) we express that
this carrier requires a nominative, a dative (indirect object), and an accusative (direct
object) to complete the semantic relation expressed. Compared to German, however,
English has a fixed word order and a simple morphology.

LA Grammar describes the fixed word order properties of English by canceling the
valency positions in the order in which they are listed in the category.11

16.5.1 FIXED CANCELING OF VALENCY POSITIONS IN A CARRIER OF ENGLISH

10 Two basic sentence patterns correspond to a one-place verb: one declarative and one inter-
rogative. Accordingly, four patterns correspond to a two-place verb, and 12 to a three-place
verb.

11 Accordingly, the variant of gave used in, for example, John gave the book to Mary is based
on the alternative lexical category (n′ a′ to′ v).
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In contrast to the German example 16.4.3, only the currently first position in the carrier
category may be canceled. This simple principle results in a fixed word order. It is
formalized by the rules12 of LA E1, an English counterpart to LA D1 (16.4.8).

16.5.2 ENGLISH LA GRAMMAR WITH FIXED WORD ORDER (LA E1)

LX =def { [Peter (snp) *], [Mary (snp) *], [books (pn) *],
[gave (n′ d′ a′ v) *]}

Variable definition: NP ∈ {snp, pn}, NP′ ∈ {n′, d′, a′},
X = .?.?.?.? (i.e., an arbitrary sequence up to length 4)

STS =def { [(X) {NOM+FV}] }
NOM+FV: (NP) (NP′ X v) ⇒ (X v) {FV+MAIN}
FV+MAIN: (NP′ X v) (NP) ⇒ (X v) {FV+MAIN}
STF =def { [(V) rpFV+MAIN] }

Here, agreement is definition-based rather than identity-based. Because English nouns
are usually not marked for case, the valency fillers are represented by the variable NP
and the valency positions by the variable NP′. According to the variable definition,
NP is defined to range over the category segments snp (singular noun phrase) or pn
(plural noun), while NP′ is defined to range over n′, d′, and a′.

The valency position to be canceled is decided by the carrier: it is the currently first
valency position.13 In this way, case is assigned to the English fillers by the respective
valency positions they cancel. Consider the following example:

16.5.3 DERIVATION IN LA E1 (definition-based agreement)

This derivation is the English counterpart to the German derivation 16.4.12 with its
identity-based agreement and free word order.

LA D1 and LA E1 demonstrate that the elementary formalism of C LAGs handles
different instances of agreement as well as variations and restrictions of word order

12 For a reformulation using the proplet format see Sect. 22.5.
13 For a complete description of the agreement restrictions of English see the variable defini-

tion of LA E2 in 17.4.1.
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on a high level of generality, in linear time, and without a counterintuitive prolifer-
ation of rules, lexical readings, or additional components like transformations. The
efficiency, flexibility, and parsimony of LA Grammar is due to its novel technique
of matching variable-based rule patterns onto categorially analyzed input expressions
using a strictly time-linear derivation order.

Exercises

Section 16.1
1. Explain the boundary between the components of morphology and syntax.
2. What do morphology and syntax have in common? How are they related in the

long-term history of a language?
3. Why are idioms a borderline phenomenon between morphology and syntax?

Why don’t they pose a problem for grammar? Give examples with explanations.
4. Describe some characteristics of synthetic and analytic languages.
5. Compare the combination principles of morphology with those of syntax.

Section 16.2
1. Explain the valency structure of the verb give.
2. What are secondary valency structures and how can they be handled?
3. What is meant by transitivization and detransitivization?
4. Do secondary valency structures call the concept of valency into question?
5. Are there other valency carriers besides verbs in natural language?
6. How are valency carriers and modifiers similar/different?
7. Explain how syntactic well-formedness is treated as a functional effect rather

than a primary object of description within the SLIM theory of language.
8. Explain the interpretation of the category (a′ b′ c′ d).

Section 16.3
1. What is agreement, and how can it be violated?
2. How do valency and agreement interact?
3. What is identity-based agreement?
4. Write a variant of LA Plaster (16.3.3) for he sees her.
5. What is good about LA Plaster, and in which respects is it deficient?

Section 16.4
1. Is there a relation between free word order and a rich morphology?
2. What is the word order of declarative main clauses in German?
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3. Explain the use of variables in the rule patterns of LA Grammar.
4. What is necessary for a recursive rule application, and how is it stopped?
5. Explain why er ihr gab das is not accepted by LA D1. Go through the derivation

and show where and why it fails.
6. Why does adding the rule name FV+MAIN to the rule package of the start state

result in an extension of LA D1 to German yes/no-interrogatives?
7. What algorithm and what method define the grammar system LA Syntax?

Section 16.5
1. Compare the patterns for the valency carrier (X NP′ Y v) in the rules of LA D1

and (NP′ X v) in those of LA E1, and explain how they provide for the different
word order properties of German and English.

2. Why would it be inefficient to use identity-based agreement in English?
3. Are LA D1 and LA E1 surface compositional, time-linear, and type transparent?
4. What is the complexity of LA D1 and LA E1, respectively?
5. Explain the inherent difficulties that basic C and PS Grammar have with the

handling of (i) word order variation and (ii) agreement.
6. Write and test a C and a PS Grammar for the 18 sentence patterns and associated

agreement phenomena handled by LA D1. Are the three grammars strongly or
weakly equivalent?



17. LA Syntax for English

This chapter extends the simple LA Syntax for English called LA E1 (16.5.2) to the
time-linear derivation of complex valency fillers, complex verb forms, and yes/no-
interrogatives. The emphasis is on explaining the descriptive power of the categorial
operations in combination with the finite state backbone defined by the rule pack-
ages.

Section 17.1 describes the left-associative derivation of complex noun phrases in
pre- and postverbal positions, showing that the categorial patterns of the rules involved
are the same in both positions. Section 17.2 develops a system for distinguishing nom-
inal fillers to handle agreement with the nominative and the oblique valency positions
in the verb. Section 17.3 shows that the system works also for the nominative posi-
tions in the auxiliary be. Section 17.4 formalizes the intuitive analysis as LA E2, and
describes the finite state backbone of the expanded system. Section 17.5 explains why
upscaling the LA Syntax for a natural language is simple, and demonstrates the point
by upscaling LA E2 to yes/no-interrogatives in LA E3.

17.1 Complex Fillers in Pre- and Postverbal Position

Noun phrases require a treatment of external agreement, i.e., restrictions which
apply to the combination of nominal fillers and verbal valency carriers. Complex
noun phrases require in addition a treatment of internal agreement, i.e., restrictions
which apply to the grammatical composition of complex noun phrases from smaller
parts.1

1 One could argue that another possible aspect of internal agreement in noun phrases is the
choice between the relative pronouns who and which. This choice, however, is not really an
instance of grammatical agreement in English, but is motivated semantically. It expresses
whether the referent is considered to be human or not, similar to the choice of the pronouns
he/she vs. it. For example, in some contexts a dog will be referred to as it or which. In other
contexts, however, the dog may be referred to as he, she, or who. Because the choice of
relative pronouns depends on the speaker’s viewpoint, the human/nonhuman distinction is
not coded into the syntactic category of English nouns. For an alternative treatment see
CoL, p. 366.
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For the sake of simplicity, the LA Syntax2 for English has so far avoided a treatment
of internal agreement by using only elementary valency fillers like Peter, Mary, and
books. The extension to complex nominal fillers like every child or all children must
not only handle internal agreement, but also the time-linear derivation of complex
valency fillers positioned before and after their valency carrier.

Internal determiner-noun agreement in English is restricted in terms of number.
For example, every child is grammatical, while *every children is not. Furthermore,
the noun phrases resulting from a determiner-noun combination must be marked for
number because they have an external agreement restriction in relation to the finite
verb. For example, every child sleeps is grammatical, while *all children sleeps is
not.

Using an identity-based handling of agreement (Sect. 16.3), these restrictions may
be represented by the following categories of determiners and nouns:

17.1.1 DETERMINER AND NOUN CATEGORIES OF ENGLISH

categories surfaces samples of lexical entries

singular and plural determiners:
(sn′ snp) a, an, every, the [a (sn′ snp) *]
(pn′ pnp) all, several, the [all (pn′ pnp) *]

singular and plural nouns:
(sn) man, woman, book, car [woman (sn) *]
(pn) men, women, books, cars [men (pn) *]

According to this categorization, the derivation of a noun phrase is based on cancel-
ing the argument position, i.e., sn′ or pn′, in the determiner with an identical noun
segment, resulting in a singular (snp) or plural (pnp) noun phrase.3

If a complex noun phrase like the girl precedes the verb, the time-linear derivation
requires that the noun phrase first be put together and then combined with the verb.
This is illustrated in the following sample derivation:

2 See the definition of LA E1 in 16.5.2, which illustrates the handling of word order in basic
declarative main clauses of English.

3 The number of a phrasal noun is often assigned by the determiner, for example, every child
vs. all children. In phrasal nouns with a definite article, however, number is assigned by the
common noun filler, for example, the child vs. the children. This can be accommodated in
an analysis of word forms as feature structures (proplets), but causes a complication in the
style of formal analysis used here. For the sake of simplicity, the determiner the is treated
in 17.1.1 as two lexical entries, one for singular and one for plural. The same would hold,
for example, for no, my, your, his, her, our, their.
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17.1.2 COMPLEX NOUN PHRASE BEFORE THE VALENCY CARRIER

The rules DET+N, NOM+FV, and FV+MAIN used in the derivation plus DET+ADJ
and AUX+NFV are discussed below. They constitute the grammar LA E2, formally
defined in 17.4.1 as an extension of LA E1 (16.5.2).

The preverbal application of DET+N is based on the following categorial operation:

17.1.3 PREVERBAL APPLICATION OF DET+N

Next NOM+FV applies, which is based on the following categorial operation:

17.1.4 APPLICATION OF NOM+FV TO COMPLEX NOMINATIVE NP

The derived noun phrase the girl of category (snp) cancels the nominative position in
the valency carrier, resulting in the sentence start the girl liked of category (a′ v).

Finally, the rule FV+MAIN fills the accusative position with the name John, result-
ing in a sentence start of category (v) – with no open valency positions left:

17.1.5 FV+MAIN ADDING ELEMENTARY OBJECT NP
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In contrast, if a complex noun phrase follows the verb, the parts of the noun phrase
must be added step by step. This is required by the time-linear derivation order. As an
example, consider the complex noun phrase a boy in the following derivation.

17.1.6 COMPLEX NOUN PHRASE AFTER VALENCY CARRIER

The sentence start the girl liked of category (a′ v) and the determiner a serve as in-
put to FV+MAIN. The combination the girl liked + a results in a legitimate inter-
mediate expression of category (sn′ v) because the resulting sentence start may be
continued into a complete well-formed sentence (Sect. 10.5). FV+Main applies as
follows:

17.1.7 FV+MAIN ADDING BEGINNING OF COMPLEX OBJECT NP

The rule pattern of FV+MAIN is the same as in 17.1.5. Here, it results in the sentence
start the girl liked a. The nominal segment sn′ at the beginning of the result category
specifies the number of the following noun. This satisfies the input condition of the
rule DET+N to be applied next.

17.1.8 POSTVERBAL APPLICATION OF DET+N

The rule pattern of DET+N is the same as in 17.1.3.
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A simple extension of derived noun phrases is the addition of one or more adjectives
between the determiner and the noun. In English, adjectives are morphologically un-
marked and there is no agreement between either the determiner and the adjective(s)
or between the adjective(s) and the noun. Unlike C Grammar (7.5.3), the semantic
function of adjectives as modifiers of the noun is not reflected in the category.

The LA rule for adding adjectives is called DET+ADJ. It requires that the sentence
start category begin with a noun segment sn′ or pn′ (like DET+N) and that the next
word, i.e., the adjective, have the category (adj).

17.1.9 DET+ADJ RECURSIVELY ADDING ADJECTIVES

DET+ADJ produces an output category which is the same as the sentence start cate-
gory – here (sn′ snp). Thus the rule may apply to its own output with no categorially-
induced upper limit (in contrast to 16.4.5). The recursive reapplication of DET+ADJ
in a pre- and a postverbal noun phrase is illustrated below.

17.1.10 COMPLEX NOUN PHRASES WITH ADJECTIVES
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Because the number of adjectives between a determiner and a noun is unrestricted
there is no grammatical limit on the length of noun phrases.

In summary, even though complex noun phrases in preverbal position are com-
posed first and then fill the valency position in the verb as a whole, while com-
plex noun phrases in postverbal position first fill the valency position and then
are assembled step by step, the categorial patterns of the rules building complex
noun phrases, namely DET+N and DET+ADJ, are the same in both instances.
Furthermore, the categorial pattern of FV+MAIN accepts the beginning of oblique
fillers irrespective of whether they are basic, e.g., it, or complex, e.g., the wild old
book.

17.2 English Field of Referents

Having described the internal agreement restrictions of complex noun phrases in pre-
and postverbal position, we next analyze the external agreement restrictions between
nominal valency fillers and their valency positions in the verb. The set of nominal
fillers includes personal pronouns, proper names, and complex noun phrases. Their
external agreement restrictions apply to distinctions of case (nominative or oblique),
number (singular or plural), and person (first, second, or third).

From a cognitive point of view, the nominal fillers form an abstract field of referents
comprising the kinds of agents and objects which may serve as the arguments of
semantic relations. Below, the nominal fillers of English are categorized in a way
suitable to specifying all external agreement restrictions between nominal fillers and
their valency positions in different verb forms.

17.2.1 CATEGORIES OF NOMINAL VALENCY FILLERS IN ENGLISH

The field of referents is partitioned in a surface compositional way, representing
only those properties which are needed for the correct syntactic combinatorics of
concrete surfaces. Thus, the distinction between the different sign kinds of symbol,
indexical, and name (Chap. 6) is not of primary importance here.
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For example, the pronoun it is categorized as an (snp) because it behaves combina-
torially like a proper name or a singular noun phrase. The pronouns I (ns1) and he/
she (ns3) are distinguished from singular noun phrases (snp) because they cannot fill
oblique valency positions, in contrast to the latter. For the same reason, we and they
of category (np-2) are distinguished from plural noun phrases (pnp).

Noun phrases of third person singular nominative, i.e., (snp) and (ns3), are distin-
guished from other noun phrases of the categories (ns1), (np-2), and (pnp) because
the nominative valency of verb forms like sleeps is restricted to third person singular,
while that of verb forms like sleep is restricted to the other five. The reason for pro-
viding I with the special category (ns1) is that the nominative valency position of the
auxiliary verb form am is uniquely restricted to it.

The pronouns me, him, her, us, them of category (obq) can fill only oblique (i.e.,
non-nominative) valency positions. For this reason they are distinguished from their
nominative counterparts and are unmarked for number or person in their category.

The pronoun you of category (pro2), finally, is special in that it may fill both nomi-
native and oblique valency positions, in both singular and plural. you is restricted only
with respect to person in that it may not fill valency positions specified for first (*you
am) or third (*you is, *you sleeps) person.

The arrangement of fillers in the field of referents follows their categories. The upper
half is occupied by the nominatives (agents). The lower half is occupied by the oblique
fillers. The left half contains the singular fillers while the right half contains the plural
fillers. All in all, the field of referents is divided into seven different classes.4

The vertical peripheries are occupied by the filler categories (snp) and (pnp), which
are unrestricted with respect to case. The category (pro2), representing the partner
in discourse you, is in the center because it is unrestricted with respect to case and
number. In this way the horizontal sequence s3 s1 sp2 p1 p3 is fixed, with s standing
for singular, p for plural, and 1, 2, 3 for person.

Though the categorization and associated grouping of nominal fillers in 17.2.1 arises
from grammatical considerations of a strictly surface compositional method, it is also
quite telling in terms of cognition. Note that it is not universal, as shown by the anal-
ogous analysis 18.2.2 of the German field of referents.

The correlation between the nominal filler categories of 17.2.1 and compatible va-
lency positions in finite main verbs of English may be shown as follows, using give as
our example. Thereby a total of five different valency positions must be distinguished,

4 On the number seven see Miller (1956).
There is in fact one additional class of nominal fillers, namely the pronominal noun

phrases mine, yours, his, hers, ours, and theirs. They are restricted in that they may not fill
valency positions of first person singular, e.g., *mine am here, *yours am here. Other than
that they may fill any nominative valency positions, e.g., mine is here, mine are here, and
oblique ones, e.g., she ate mine, of either number. This agreement pattern may be expressed
by the category np-s1 (noun phrase minus first person singular nominative).
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namely the nominative positions n-s3′ (in give), n′ (in gave), and ns3′ (in gives) as
well as the oblique positions d′ (for dative) and a′ (for accusative).

17.2.2 AGREEMENT OF FILLERS AND VALENCY IN MAIN VERBS

The valency position n-s3′ may only be canceled by the category segments ns1, np-2,
pnp, and pro2, while the valency position ns3′ may only be canceled by the category
segments snp and ns3. Thus, the possible fillers of n-s3′ and ns3′ are in comple-
mentary distribution. The valency position n′ accepts elements from the union of the
n-s3′ and ns3′ fillers. The oblique valency positions d′ and a′ accept all filler seg-
ments which are not explicitly marked as a nominative, namely snp, obq, pnp, and
pro2.

All main verbs of English have the three finite forms illustrated in 17.2.2, including
the irregular ones, and they all share the same pattern of nominative agreement. Also,
the agreement restriction between fillers and oblique valency positions is the same for
all main verbs. The only variation between different kinds of main verbs arises in the
number of oblique argument positions, which may be zero, e.g., [sleep (n-s3′ v) *],
one, e.g., [see (n-s3′ a′ v) *], or two, e.g., [give (n-s3′ d′ a′ v) *].

17.3 Complex Verb Forms

In addition to the English main verbs there are three auxiliary verbs, do, have, and be,
and a larger number of modals, such as can, could, may, might, must, shall, could, will,
would, and ought. The modals are morphologically parallel to the past tense form of
main verbs, e.g., [gave (n′ d′ a′ v) *] in that they have no special forms and therefore
have no special agreement restrictions regarding their nominative fillers.

The auxiliaries do and have, on the other hand, have three finite forms do, does,
did, and have, has, had, respectively, which are morphologically parallel to the forms
of the main verbs and share their pattern of nominative agreement. The auxiliary be,
finally, has the five finite forms am, is, are, was, and were, which require a special
pattern for nominative agreement, described schematically as follows:
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17.3.1 NOMINATIVE AGREEMENT OF THE AUXILIARY be

The categorization of the fillers is that of 17.2.1, already used in 17.2.2. Regarding
the corresponding valency positions, on the other hand, the additional segments ns1′,
ns13′, and n-s13′ are needed for handling the special restrictions of am, was, and
are/were.

The finite forms of the auxiliaries combine with the nonfinite forms of the main
verbs into complex verb forms. In accordance with traditional grammar, the nonfinite
forms of English main verbs are the infinitive, e.g., give, the past participle, e.g., given,
and the present participle, e.g., giving.

The infinitive has no form of its own, but coincides with the unmarked present tense
of the verb.5 The past participle is marked in some irregular verbs, e.g., given, but
usually coincides with the past tense, e.g., worked. The present participle, finally, is
always marked, as in giving or working.

The infinitive combines with the finite forms of do into the emphatic, e.g., does give.
The past participle combines with the finite forms of have into the present perfect,
e.g., has given. The present participle combines with the finite forms of be into the
progressive, e.g., is giving.6

The finite auxiliary forms all have variants with integrated negation, namely don’t,
doesn’t, didn’t, haven’t, hasn’t, hadn’t, isn’t, aren’t, wasn’t, and weren’t. They have the
same combinatorial properties as their unnegated counterparts.

The basic categorial structure of combining a finite auxiliary with a nonfinite main
verb may be shown schematically as follows:

5 For reasons of surface compositionality, the ultimately correct way is to categorize a form
like give only once, namely as [give (n-s3′ d′ a′ v) *] (CLaTR, Sect. 15.4). However, to
bring out the parallel nature of complex verb forms built with the auxiliaries do, have, and
be, as in does give, has given, and is giving shown in 17.3.2, we adopt temporarily two
categories, e.g., (n-s3′ d′ a′ v) for the use as a finite form and (d′ a′ do) for the use as an
infinitive.

6 In addition there are complex verb forms like is given and has been given (passive) and has
been giving (present perfect progressive), which we leave aside. Cf. CoL, pp. 100f.
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17.3.2 COMPLEX VERB FORMS OF ENGLISH

The nominative agrees with the finite auxiliary, for which reason its valency position
(here ns3′) is located in the auxiliary category. The oblique valencies, on the other
hand, are contributed by the respective nonfinite main verb (here d′ and a′). That
the above auxiliaries are finite is marked by the presence of the v segment in their
categories. That the main verb forms are nonfinite is shown correspondingly by the
absence of a v segment. There is an identity-based agreement between the finite auxil-
iary and the nonfinite main verb, which is expressed in terms of the auxiliary segments
do (for do), hv (for have), and be (for be), respectively.

The combination of an auxiliary with a nonfinite main verb form, e.g., has given,
results in a complex verb form which has the same properties in terms of nominative
agreement and oblique valency positions as the corresponding finite form of the main
verb in question, here gives. This holds also in a strictly time-linear derivation, as
shown by the following examples.

17.3.3 COMPARING BASIC AND COMPLEX VERB FORMS OF ENGLISH

The nonfinite main verb is added by a new rule called AUX+NFV, illustrated below.
The two partial derivations end in the same state and may be continued in the same
way.

17.3.4 AUX+NFV ADDING A NONFINITE VERB
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This application of AUX+NFV shows the identity-based agreement between the finite
auxiliary and the nonfinite main verb as well as the canceling of the auxiliary segment,
here hv′.

17.4 Finite State Backbone of LA Syntax (LA E2)

The handling of (i) complex noun phrases in pre- and postverbal position, (ii) external
nominal agreement, and (iii) complex verb forms described intuitively in Sects. 17.1–
17.3 will now be formalized as the grammar LA E2, which extends LA E1 (16.5.2) in
terms of a larger lexicon, a more detailed variable definition, and the three additional
rules DET+ADJ, DET+N, and AUX+NFV. Also, the nw pattern of FV+MAIN will
be adjusted to handle complex noun phrases.

17.4.1 LA E2: AN ENGLISH LA SYNTAX WITH COMPLEX NPS

LX =def {[Julia (snp) *], [John (snp) *], [Susanne (snp) *], [it (snp) *],
[boy (sn) *], [boys (pn) *], [girl (sn) *], [girls (pn) *], [book (sn) *],
[books (pn) *], [a (sn′ snp) *], [every (sn′ snp) *], [the (sn′ snp) *],
[all (pn′ pnp) *], [several (pn′ pnp) *], [the (pn′ pnp) *]
[i (ns1) *], [you (pro2), [he (ns3) *], [she (ns3) *], [it (snp) *],
[we (np-2) *], [they (np-2) *], [me (obq) *], [him (obq) *],
[her (obq) *], [us (obq) *], [them (obq) *]
[am (ns1′ be′ v) *], [is (ns3′ be′ v) *], [are (n-s13′ be′ v) *]
[was (ns13′ be′ v) *], [were (n-s13′ be′ v) *]
[have (n-s3′ hv′ v) *], [has (ns3′ hv′ v) *], [had (n′ hv′ v) *]
[do (n-s3′ do′ v) *], [does (ns3′ do′ v) *], [did (n′ do′ v) *]
[give (n-s3′ d′ a′ v) *], [gives (ns3′ d′ a′ v), [gave (n′ d′ a′ v) *],
[give (d′ a′ do) *], [given (d′ a′ hv) *], [giving (d a be) *]
[like (n-s3′ a′ v) *], [likes (ns3′ a′ v), [liked (n′ a′ v) *]
[like (a′ do) *], [liked (a′ hv) *], [liking (a′ be) *]
[sleep (n-s3′ v) *], [sleeps (ns3′ v) *], [slept (n′ v) *]
[sleep (do) *], [slept (hv) *], [sleeping (be) *]}

variable definition:
NP′ ∈ {n’, n-s3’, ns1’, ns3’, ns13’, n-s13’, d’, a’}, (valency positions)
NP ∈ {pro2, ns1, ns3, np-2, snp, pnp, pn, obq} (valency fillers), and

If NP = pro2, then NP′ ∈ {n′, n-s3′, n-s13′, d′, a′},
if NP = ns1, then NP′ ∈ {n′, n-s3′, ns1′, ns13′},
if NP = ns3, then NP′ ∈ {ns3′, ns13′},
if NP = np-2, then NP′ ∈ { n′, n-s3′},
if NP = snp, then NP′ ∈ { n′, ns3′, ns13′, d′, a′},
if NP = pnp, then NP′ ∈ {n′, n-s3′, n-s13′, d′, a′},
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if NP = obq, then NP′ ∈ {d′, a′},
N ∈ {sn, pn} and N′ correspondingly sn′ or pn′,
AUX ∈ {do, hv, be} and aux′ correspondingly do′, hv′ or be′
X, Y = .?.?.?.? (arbitrary sequence up to length 4)

STs =def { [(X) {1 DET+ADJ, 2 DET+N, 3 NOM+FV}] }
DET+ADJ: (N′ X) (ADJ) ⇒ (N′ X) {4 DET+ADJ, 5 DET+N}
DET+N: (N′ X) (N) ⇒ (X) {6 NOM+FV, 7 FV+MAIN}
NOM+FV: (NP) (NP′ X v) ⇒ (X v) {8 FV+MAIN, 9 AUX+NFV}
FV+MAIN: (NP′ X v) (Y NP) ⇒ (Y X v) {10 DET+ADJ, 11 DET+N,

12 FV+MAIN}
AUX+NFV: (AUX′ v) (X AUX) ⇒ (X v) {13 FV+MAIN}
STF =def { [(v) rpnom+fv], [(v) rpaux+nfv], [(v) rpfv+main], [(v) rpdet+n]}

The categories of the word forms in LX correspond to those developed in the previous
three sections. The specified variables NP, NP′, N, N′, AUX, and AUX′ characterize the
category segments of valency positions for – and valency fillers consisting of – noun
phrases, nouns, and auxiliaries, respectively.

The conditional clauses relating NP and NP′ in the variable definition provide a
definition-based characterization of the external agreement restrictions between nom-
inal fillers and their valency positions (Sect. 17.2).7 Empirical investigations have
shown that a definition of agreement restrictions will use a smaller set of agreeing
elements (and will thus be more efficient) if for each filler segment the compatible
valency positions are defined, instead of the other way around.

As shown by the LA Grammar defined in 10.2.3 for akbkck, the relation between
rules and their rule packages defines a finite state transition network (10.2.4). The
FSNs of LA Grammars of artificial languages are usually too simple to be of particular
interest. The FSNs for LA Grammars for natural languages, on the other hand, may
be quite illuminating for the empirical work.

The FSN of LA E2 has six different states, namely the start state STS (i) and
the output states of the five rules DET+ADJ (ii), DET+N (iii), NOM+FV (iv),
FV+MAIN (v), and AUX+NFV (vi).

7 The variable definition in this and the following LA Grammars is designed for maximal
brevity in a complete description of the complex agreement restrictions of English and Ger-
man. Alternatively, one could define an equivalent LA Syntax using typed feature structures
and unification. However, translating the definition-based agreement restrictions in 17.4.1
between noun phrases and their verbal positions into typed feature structures would result
in an artificially inflated representation on the level of the lexicon without making the rules
any simpler. Furthermore, in order to handle the categorial operations, unification alone
would not be sufficient, but would have to be supplemented by operations for canceling
and building up valencies, defined in terms of deleting and adding parts of the feature struc-
tures. NLC and CLaTR use nonrecursive feature structures with ordered attributes, called
proplets, and define the categorial operations of the rules in terms of proplet patterns.
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17.4.2 THE FINITE STATE BACKBONE OF LA E2

As in 10.2.4, the states are represented by circles and the transitions by arrows. The
additional circles in the states (iii), (iv), (v), and (vi) indicate that they may also serve
as final states (STF in 17.4.1).

All transitions going into a state correspond to the categorial operation of the same
rule – though from different preceding states. All transitions leading out of a state,
on the other hand, correspond to different rules and represent the (content of the) rule
package of the rule leading into the state.

A transition corresponds to a successful rule application and thus combines a sen-
tence start with a next word. The possible transitions which a certain rule may perform
are defined explicitly by the rule packages which name the rule in question.

The FSNs for natural languages may be quite complex.8 To make them more
transparent it is recommended to number the transitions in the rule packages of the
LA Grammar (in LA E2 from 1 to 13). These numbers may then be used to name the
transition arrows in the FSN. Given that the rules leading into a state are all the same,
it is sufficient, and less cluttering, if rule names are added to only one transition arrow
leading into a state (compare 17.4.2 and 10.2.4).

If each transition of an LA Syntax is given a unique name (e.g., a number), then
grammatical derivations within that grammar may be characterized by writing the
respective transition names in front of each next word, as in the following examples:

17.4.3 SPECIFYING THE TRANSITION NUMBERS IN THE INPUT

Peter 3 gave 8 Mary 12 a 11 book
the 1 beautiful 4 young 5 girl 6 is 9 reading 13 a 10 wild 4 old 5 book

8 Especially in the step-by-step extension of an LA Grammar for a natural language, the asso-
ciated FSNs provide a transparent representation of the increase in transitional connections
between states. This is shown by the extension of LA E1 via LA E1.5 (FSNs in 17.5.1) and
LA E2 (FSN 17.4.2) to LA E3 (FSN 17.5.6).
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the 2 boy 6 gave 8 the 11 girl 7 a 11 book
Peter 3 gave 8 Mary 12 Susanne

The numbers correspond to those in 17.4.1 and in 17.4.2. The names assigned to the
transitions in an FSN are essentially arbitrary – instead of numbers one could also use
letters or the names of cities. The numbers in 17.4.2 and 17.4.3 are chosen to follow
the sequence of rule names in the rule packages of LA E2.

The FSN aspect of left-associative analysis is illustrated in more detail below.

17.4.4 SYNTACTIC ANALYSIS WITH TRANSITION NUMBERS

This example has the familiar form of left-associative derivations (e.g., 17.1.2, 17.1.6,
17.1.10) except that the transition numbers of 17.4.2 are specified in front of the
rule names. Note that, for example, DET+ADJ occurs with three different transi-
tion numbers, namely 1, 4, and 10, indicating that this rule is called by the rule
packages of the start state, of DET+ADJ, and of FV+MAIN. And similarly for
DET+N.

The five rules of LA E2 fulfill the pattern requirement for C LAGs (11.2.5–11.2.7).
Furthermore, the five rules have incompatible input conditions (11.3.3). Therefore,
LA E2 is a C1 LAG and parses in linear time.
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17.5 Yes/No-Interrogatives (LA E3) and Grammatical Perplexity

The extension of a simple LA Syntax, e.g., LA E1, to a descriptively more powerful
system, e.g., LA E2, is facilitated by the fact that each new construction is realized
as an additional sequence of transitions within the existing FSN. In the simplest case,
a new transition requires no more than adding an existing rule name to an existing
rule package. Sometimes the categorial operation of a rule has to be generalized in
addition (compare for example FV+MAIN in LA E1 and LA E2). At worst, a new
rule has to be written and integrated into the network by adding its name to existing
rule packages and by writing the names of existing rules into its rule package.

As an example of an extension requiring the definition of new rules consider the
addition of complex noun phrases to LA E1 (16.5.2). The finite state backbone of
LA E1 and its extension into the intermediate system LA E1.5 is given below.

17.5.1 EXPANDING LA E1 TO LA E1.5 HANDLING COMPLEX NPS

To facilitate comparison, the FSNs of LA E1 and LA E1.5 use the same names for cor-
responding states and transitions as the FSN of LA E2 (17.4.2). The grammar LA E1.5,
which is omitted here, is like LA E2 without the rule AUX+NFV.

To extend LA E1 to the handling of complex noun phrases, two locations in the net-
work have to be taken care of. One corresponds to the preverbal position of complex
noun phrases in the sentence, the other to the postverbal position(s).

Adding complex noun phrases in a preverbal position requires definition of the new
rules DET+ADJ and DET+N, resulting in the additional states ii and iii. Furthermore,
the additional transitions 1 and 4 (DET+ADJ), 2 and 5 (DET+N), and 6 (NOM+FV)
must be defined. This is done by writing the rule names DET+ADJ and DET+N into
the rule packages of START and DET+ADJ, and the rule name NOM+FVERB into
the rule package of DET+N.

Adding complex noun phrases in a postverbal position re-uses the just added rules
DET+N and DET+ADJ without any need for additional state definitions or changes
in their categorial operations. All that is required are three additional transitions,
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namely 7 (FV+MAIN), 10 (DET+ADJ), and 11 (DET+N). These are implemented
by writing the rule name FV+MAIN into the rule package of NOM+FV, and the rule
names DET+ADJ and DET+N into the rule package of FV+MAIN.

In the development and extension of LA Grammars, existing rules may be re-used in
additional transitions if the patterns of their categorial operations have been designed
with sufficient generality (Sects. 17.1 and 17.3). The debugging of rules is greatly
facilitated by the fact that LA Syntax is (i) type-transparent (9.3.1) and (ii) time-
linear (10.5.2). For this reason, errors in the parsing follow directly from errors in the
grammar specification. The first occurrence of an error usually causes the time-linear
derivation to break off immediately (10.5.5), whereby the cause is displayed explicitly
in the category or the rule package of the last sentence start.

As another example of a possible extension consider adding yes/no-interrogatives to
LA E2. In English, this construction is based on inverting the order of the nominative
and the finite auxiliary compared to that of the corresponding declarative.

17.5.2 COMPARING DECLARATIVES AND YES/NO-INTERROGATIVES

Susanne does enjoy the book. Does Susanne enjoy the book?
Susanne has enjoyed the book. Has Susanne enjoyed the book?
Susanne is enjoying the book. Is Susanne enjoying the book?

The extension to the interrogative structures should be such that the transitions fol-
lowing the nonfinite main verb remain unchanged. Furthermore, the complex noun
phrases serving as nominatives in the additional constructions should be derived by
feeding the new transitions back into the preexisting network.

The planned extension requires the definition of two new rules, called AUX+MAIN
and IP. AUX+MAIN has the following categorial operation:

17.5.3 CATEGORIAL OPERATION OF AUX+MAIN

The variable X in the next word pattern (X NP) anticipates complex nominatives be-
ginning with a determiner, e.g., [every (sn′ snp) *] as in Does every + child (sleep).
Changing the verb segment from v to vi ensures that the other new rule IP (for inter-
punctuation, cf. 17.5.4) adds a question mark rather than a full stop.

Next we have to integrate AUX+MAIN into LA E2. Because AUX+MAIN handles
the beginning of interrogative sentences it must be written into the rule package of
the start state STS . If the nominative is a complex noun phrase, as in Does the girl or
Does the beautiful young girl, AUX+MAIN should be continued with DET+NOUN
or DET+ADJ, the names of which are therefore written into its rule package.
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If the nominative is elementary, on the other hand, AUX+MAIN should be con-
tinued with the existing rule AUX+NFV. Because complex nominatives follow-
ing AUX+MAIN must also continue with AUX+NFV, the name AUX+NFV must
be written not only into the rule package of AUX+MAIN, but also into those of
DET+ADJ and DET+N. Once the already existing rule AUX+MAIN has been
reached, the derivation continues as in LA E2.

The new rule IP adds a question mark to sentence starts of category (vi), and a
question mark or a full stop to sentence starts of category (v). Thus the new system
will handle, e.g., Susanne sings., Susanne sings?, and Is Susanne singing?, while *Is
Susanne singing. will be rejected. The categorial operation of IP is illustrated below,
whereby the variable VT stands for ‘V type.’

17.5.4 CATEGORIAL OPERATION OF IP

The name of IP must be added to the rule packages of DET+N (e.g., Susanne ate
the apple + .), NOM+FV (e.g., Susanne sings + .), FV+MAIN (e.g., Susanne saw
Mary + .), and AUX+NFV (e.g., Susanne is singing + . or Is Susanne singing + ?).

These extensions are formally captured by the following definition of LA E3:

17.5.5 LA E3 FOR ENGLISH YES/NO-INTERROGATIVES

LX = LX of LA E2 plus {[. (v′ decl) *], [? (v′ interrog) *], [? (vi′ interrog)*]}
Variable definitions = that of LA E2 plus VT ∈ {v, vi},

STS =def { [(X) {1 DET+ADJ, 2 DET+N, 3 NOM+FV, 4 AUX+MAIN}] }
DET+ADJ: (N′ X) (adj) ⇒ (N′ X) {5 DET+ADJ, 6 DET+N}
DET+N: (N′ X) (N) ⇒ (X) {7 NOM+FV, 8 FV+MAIN, 9 AUX+NFV, 10 IP}
NOM+FV: (NP) (NP′ X v) ⇒ (X v) {11 FV+MAIN, 12 AUX+NFV, 13 IP}
FV+MAIN: (NP′ X VT) (Y NP)

⇒ (Y X VT) {14 DET+ADJ, 15 DET+N, 16 FV+MAIN, 17 IP}
AUX+NFV: (AUX′ VT) (X AUX) ⇒ (X VT) {18 FV+MAIN, 19 IP}
AUX+MAIN: (NP′ AUX′ v) (x NP)

⇒ (X AUX′ vi) {20 AUX+NFV, 21 DET+ADJ, 22 DET+N}
IP: (VT) (VT′ X) ⇒ (X) {}
STF =def { [(decl) rpip], [(interrog) rpip]}

The finite state backbone of LA E3 has the following structure:
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17.5.6 THE FINITE STATE BACKBONE OF LA E3

The extension of LA E2 to LA E3 in order to handle yes/no-interrogatives required
no revision of the older system, but is based solely on the addition of the rules
AUX+MAIN and IP, and the addition of certain rule names to certain rule packages.

The FSN 17.5.6 has 22 transitions, corresponding to the sum total of all rule names
in all rule packages of LA E3 including the start package. LA E3 has seven rules and
one start state for which reason the FSN consists of a total of eight states (i–viii). The
new interpunctuation rule IP has the special property that its rule package is empty.
Furthermore, the definition of the final states in LA E3 treats IP as the only ‘completing
rule’ of the grammar.9

The seven rules of LA E3 have incompatible input conditions for which reason
LA E3 – like its predecessors – is a C1 LAG and parses in linear time. When parsing
with LA E3, any kind of input is analyzed from left to right, until either the whole input
has been analyzed or the derivation fails because of ungrammatical continuation.

If the input is parsed to the end and at least one of the last states turns out to fulfill a
final state definition of the grammar, the input is classified as a complete grammatical
sentence. If the input is parsed to the end and none of the last states turns out to fulfill
a final state definition, the input is classified as an incomplete well-formed expres-
sion. If the input is not parsed to the end, on the other hand, the input is classified as
ungrammatical.

The step-by-step extension of LA E1 to LA E3 has resulted in increasingly denser
transitions in the FSNs. Nevertheless, the use of rule packages with selected rules is
still far more efficient than a hypothetical system in which all rule packages blindly
list all the rules of the grammar. In the latter case, an LA Grammar with one start state

9 LA E3 and its predecessors are conventional in that their derivation stops at the end of
a sentence. The rule IP may be extended, however, to attach the beginning of the next
sentence, as shown in NLC and CLaTR. In this way, time-linear parsing may be extended
from sentences to text.
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and seven rules (analogous to LA E3) would result in 7 + (7 · 7) = 56 transitions – in
contrast to LA E3, which has only 22 transitions.

The total number of transitions divided by the number of states provides a general
measure for the perplexity of C1 LAGs. In statistical language recognition, perplexity
represents the average number of possible continuations at any point.

Perplexity is, crudely speaking, a measure of the size of the set of words from which
the next word is chosen given that we observe the history of the spoken words.

Roukos (1995)

In the word sequence The early bird gets the, for example, it is statistically highly
probable that the next word will be worm. Thus, for statistical language recognition the
set from which the next word is chosen is very small here and the perplexity therefore
very low. Correspondingly, the perplexity of a scientific paper on, e.g., radiology,
will be higher than in the above example, but still lower than in general English. An
example of general English is the Brown corpus, which has been claimed to have a
perplexity of 247.

While statistical language recognition determines perplexity probabilistically with
respect to the sequences of word forms observed in a corpus, the notion of gram-
matical perplexity represents the average number of attempted rule applications in an
LA Grammar. For example, in the hypothetical LA Grammar with nonselective rule
packages mentioned above, the grammatical perplexity would be 56 : 8, i.e., seven
attempted rule applications per composition. In LA E3, on the other hand, the gram-
matical perplexity is only 2.75(= 22 : 8).

The use of selective rule packages results not only in lower grammatical perplexity
and thus in higher efficiency, however. Equally important is the fact that selective rule
packages (i) provide a descriptively more adequate linguistic description and (ii) allow
simpler definitions of the categorial input patterns of the rules.10

10 Point (ii) refers to the fact that the categorial operations need to provide pattern-based
distinctions relative to only those rules which they share a rule package with. In practice,
one will find that specifying the categorial operations for an LA Grammar with an average
of 2.75 rules per package is considerably easier than for an equivalent LA Grammar with
an average of seven rules per package.
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Exercises

Section 17.1
1. Explain the LA categorization of English determiners. Does this categorization

use a definition-based or an identity-based handling of agreement?
2. Describe the LA derivations of John gave Mary Fido, the boy gave the girl the

dog, and the old boy gave the young girl the big dog, and give detailed explana-
tions of the pattern matching and the categorial operations of the rules involved.

3. Why is the recursive application of DET+ADJ unrestricted? What causes the
recursion of FV+MAIN to be restricted to at most two applications?

4. Explain why the time-linear derivations of complex noun phrases in pre- and
post-verbal position are asymmetric, yet can be handled by the same rules.

Section 17.2
1. What are the seven classes of nominal fillers in English? In what sense do they

constitute the field of referents characteristic of the English language?
2. Why is the analysis of nominal fillers in 17.2.1 strictly surface compositional?

Why would it be unjustified to transfer this analysis to other languages?
3. Describe the agreement restrictions of nominal fillers and verbal valency posi-

tions in English main verbs.
4. What are the agreement restrictions of you, I, he, him, and she?

Section 17.3
1. What special agreement restrictions are required by the auxiliary to be?
2. What is the categorial structure of English auxiliaries?
3. Describe the nonfinite verb forms of English. To what degree are they marked

morphologically, and how are they categorized?
4. Explain the categorial operation of the rule AUX+NFV.

Section 17.4
1. Describe the finite state backbone of LA E2 and explain where in 17.4.1 it is

defined.
2. Why must the transitions going into a state all have the same rule name, while

the transitions going out of a state must all have different rule names?
3. Which components of an LA Grammar determine the exact total number of its

transitions?
4. Which component of an LA Grammar determines the choice of transitions at any

step of a derivation during analysis?
5. What do LA Grammars have in common with finite automata and which formal

aspect of LA Grammars raises their generative power from the class of regular
languages to the class of recursive languages?

6. Which complexity-theoretic property makes the C LAGs especially suitable for
the description of natural languages?
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Section 17.5
1. What may be required for the extension of an existing LA Syntax to new con-

structions? Illustrate your explanation with examples.
2. Write an explicit LA Grammar for the finite state backbone of LA E1.5 provided

in 17.5.1.
3. Explain the categorial operation of AUX+MAIN. Give a linguistic reason why

AUX+MAIN applies only at the beginning of a sentence and show how this is
realized in the formal LA Grammar LA E3.

4. How is the derivation of ungrammatical ‘*Does Susanne sing.’ prevented in
LA E3? Explain the categorial operation of IP.

5. Expand LA E3 to handle sentences like There is a unicorn in the garden.
6. On what grounds is the analysis of an input expression classified as in/complete

or un/grammatical? Are the principles of this classification limited to natural
languages or do they apply to formal languages as well?

7. Give three reasons why selective rule packages are preferable to nonselective rule
applications. By what means can a rule be prevented from applying successfully
if the system does not use selective rule packages?

8. Explain the notion of grammatical perplexity as a meaningful measure for the
efficiency of C LAGs. Could it be applied to B LAGs and A LAGs as well?

9. Why is it possible to compute the grammatical perplexity of C1 LAGs, but not
of C2 or C3 LAGs?



18. LA Syntax for German

The LA Grammar analysis of natural languages should not only provide a formal
description of their syntactic structure, but also explain their communicative function.
To advance a functional understanding of different kinds of natural language syntax
within a strictly time-linear derivation order, the LA Syntax of a fixed word order
isolating language (English, Chap. 17) will be complemented with the LA Syntax of
a free word order inflectional language (German).

Section 18.1 describes the pre- and postverbal derivation of complex noun phrases
in German, based on a distinctive categorization of determiners. Section 18.2 analyzes
the external agreement restrictions of nominal fillers based on a field of referents and
formalizes the results in LA D2. Section 18.3 illustrates the far-reaching differences
between English and German word order regarding complex verb forms, interroga-
tives, and subordinate clauses. Section 18.4 presents a detailed categorial analysis of
complex verb forms and formalizes the results in LA D3. Section 18.5 expands LA D3
to interrogatives and adverbial subclauses, and concludes with the formal definition
of LA D4 and its finite state transition network.

18.1 Standard Procedure of Syntactic Analysis

All natural languages are based on the same time-linear derivation order. The only
differences between individual languages arise in their handling of agreement, word
order, and lexicalization, whereby the latter may result in differences in valency struc-
ture. Because of this profound similarity, the SLIM theory of language provides a
standard procedure for the grammatical description of any natural language.

To determine the typological properties of a natural language, the first step of its
syntactic analysis should be the formal treatment of declarative main clauses with
elementary finite verbs and elementary nominal fillers. This is because (i) the position
of the finite verb and its nominal fillers and (ii) the agreement restrictions between the
nominal fillers and verbs of differing valency structure determine the basic word order
and agreement properties of the language. This step has been illustrated with LA D1
for a free word order inflectional language (German, Sect. 16.4) and LA E1 for a fixed
word order isolating language (English, Sect. 16.5).

R. Hausser, Foundations of Computational Linguistics,
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The second step is the extension to complex nominal fillers. This requires treatment
of the internal and the external agreement restrictions of complex noun phrases, and
the time-linear derivation of complex fillers in pre- and postverbal position. Apart
from their more complicated internal structure, the addition of complex noun phrases
to the initial grammar should result in the same kinds of sentences as before. This is
illustrated by the transition from LA E1 (16.5.2) to LA E2 (17.4.1).

The third step is the extension to complex verb phrases to treat complex tenses and
modalities. This may lead to new variants of word order. Otherwise, depending on the
language type, the number of different sentence frames handled by the formal gram-
mar may still be rather small. Yet all aspects of valency, agreement, and word order
applicable to these sentence frames should now have their completely detailed and
general final treatment. This step is illustrated by the transition from LA E2 (17.4.1)
to LA E3 (17.5.5).

After this initial three-step phase one may well be tempted to explore the syntactic
territory further by adding additional constructions. This is not recommended, how-
ever. What has to be done first, at this point, is the definition of a theoretically well-
founded semantic and pragmatic interpretation for the syntactic analysis developed so
far, which must be demonstrated to be functionally operational.

Only then follows the second phase of expanding the grammar. There are many top-
ics to choose from: (i) the addition of basic and complex modifiers ranging from ad-
nominal and adverbial adjectives to prepositional phrases to adnominal and adverbial
subclauses, (ii) the treatment of sentential subjects and objects, (iii) infinitive con-
structions, (iv) different syntactic moods like the interrogative including unbounded
dependencies, (v) different voices of the verb like passive, (vi) conjoined sentences,
and (vii) gapping constructions.

Syntactically, the extensions of the second phase should build on the structures of
the first phase without any need for revisions in the basic valency and agreement
structures. The syntactic analyses of the second phase should be developed directly
out of the semantic and pragmatic interpretation, and should be provided for both the
speak and the hear mode (Chaps. 19, 22–24).

Having illustrated the initial three-step phase of grammar development with the
definition of LA E1, LA E2, and LA E3 for English, let us turn now to German. The
free word order of German in declarative main clauses with elementary fillers has
already been described in Sect. 16.4. Let us therefore take the second step, i.e., the
extension to complex noun phrase fillers in pre- and postverbal position.

Complex noun phrases in German resemble those in English in that their struc-
ture consists of a determiner, zero or more adjectives, and a noun. They differ from
those in English, however, in that they (i) are marked for case and (ii) show a wide
variety of inflectional markings resulting in complicated internal agreement restric-
tions between the determiner and the noun. Furthermore, (iii) adjectives have inflec-
tional endings which result in agreement restrictions between determiners and adjec-
tives (15.2.2).
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The definite and the indefinite determiners in German have a total of 12 distinct
surfaces. Using the distinctive categorization of nouns in 14.5.4 for a definition-
based determiner-noun agreement, an identity-based determiner-adjective agree-
ment (18.1.2), and a fusion of cases whenever possible (e.g., (S3&A) for das Kind),
a total of 17 different categories for the 12 determiner surfaces is sufficient for a com-
plete treatment of the internal and external agreement restrictions of complex noun
phrases in German.

18.1.1 DISTINCTIVE CATEGORIZATION OF DETERMINERS

definite article indefinite article

[der (e′ mn′ s3) [ein (er′ mn′ s3)
(en′ f′ g&d) (es′ n-g′ s3&a) indef-art]
(en′ p-d′ g) def-art] [eines (en′ -fg′ g) indef-art]

[des (en′ -fg′ g) def-art] [einem (en′ -fd′ d) indef-art]
[dem (en′ -fd′ d) def-art] [einen (en′ m-n′ a) indef-art]
[den (en′ m-n′ a) [eine (e′ f′ s3&a) indef-art]

(en′ pd′ d) def-art] [einer (en′ f′ g&d) indef-art]
[das (e′ n-g′ s3&a) def-art]
[die (e′ f′ s3&a)

(en′ p-d′ p3&a) def-art]

As explained in Sect. 15.2, the proper treatment of German adjective agreement is
very simple, and consists in matching the ending of the adjective with a corresponding
segment of the determiner. This is illustrated by the following examples showing the
pattern matching of the rules DET+ADJ and DET+N. They are part of the German
LA Grammar LA D2 defined in 18.2.5.

18.1.2 CATEGORIAL OPERATION OF DET+ADJ

The categorial operation of DET+ADJ leaves the adjective segment in place to allow
recursion (compare 17.1.9).

18.1.3 CATEGORIAL OPERATION OF DET+N
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The categorial operation of DET+N removes both the adjective and the noun segment
from the category because they can no longer be used.

The time-linear derivation of complex noun phrases in pre- and postverbal position
may be shown as follows, using the transition numbers of LA D2 (18.2.5).

18.1.4 PRE- AND POSTVERBAL DERIVATION OF NOUN PHRASES

The categorial patterns of DET+ADJ and DET+N are suited equally well for the pre-
and the postverbal derivation of complex noun phrases. The time-linear derivation is
analogous to that of English (17.1.2–17.1.10).

18.2 German Field of Referents (LA D2)

Because German is an inflectional language, its noun phrases and verbs are tradition-
ally represented in the form of exhaustive paradigms such as the following:

18.2.1 TRADITIONAL EXHAUSTIVE PARADIGMS OF GERMAN NOUN PHRASES

Masculinum Femininum Neutrum Plural
Nominative der Mann die Frau das Kind die Männer, etc.
Genitive des Mannes der Frau des Kindes der Männer, etc.
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Dative dem Mann der Frau dem Kind den Männern, etc.
Accusative den Mann die Frau das Kind die Männer, etc.

Developed by the grammarians of classic Greek and Latin, exhaustive paradigms char-
acterize all the forms of a word or phrase kind in terms of certain parameters such as
case, gender, and number in noun prases; person, number, tense, voice, and mood in
verbs; case, gender, number, and degree in adjectives; etc.

A paradigm table results from multiplying the relevant parameter values. In 18.2.1,
for example, there are 24 slots resulting from multiplying four cases, three genders,
and two numbers. Note that only 18 distinct surfaces are distributed over the 24 slots.
Surfaces which occur in more than one slot are treated as ambiguous.

Exhaustive paradigms are misleading for the description of German because they
disguise the fact that feminine, neuter, and plural noun phrases of German always
have the same surface for the nominative and the accusative. Furthermore, feminine
noun phrases of German always have the same surface for the genitive and dative.
Thus, a crucial property of German is that the surfaces of some nominal fillers are not
marked for grammatical properties that are relevant for an unambiguous specification
of the associated valency position.

Exhaustive paradigms are misleading also in another respect: they mark nominal
fillers for properties that are not relevant for an unambiguous specification of com-
patible valency positions. For example, while the distinction of singular and plural
in the genitive, dative, and accusative is important semantically, it is combinatorially
irrelevant because the oblique valency positions of German verbs – like their English
counterparts – are not restricted for number. The same holds for the gender distinction,
which is combinatorially irrelevant in all grammatical cases.

A surface compositional categorization of nominal fillers in German is shown below.
It includes complex noun phrases, personal pronouns, and proper names, and forms
an abstract field of referents analogous to that of English (cf. 17.2.1).

18.2.2 DISTINCTIVE CATEGORIES OF NOMINAL FILLERS (GERMAN)
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Certain surfaces which an exhaustive paradigm would present in several slots are an-
alyzed here as lexical units occurring only once.1 For example, Peter occurs only
once in the field with the category (s3&d&a). And correspondingly for das Kind, es,
die Frau (s3&a), sie (s3&p3&a), die Männer, die Frauen, die Kinder (p3&a), uns, euch
(d&a), and der Frau (g&d).

Furthermore, certain forms of different words with the same distinctive category are
collected into one subfield. Thus, dir, mir, ihm, ihr, dem Mann, ihnen, den Männern,
den Frauen, and den Kindern have the same category (d) even though they differ in
person or number. This is because these differences do not affect agreement with
valency positions specified for oblique cases.

Like the English counterpart shown in 17.2.1, the order of the fields is based on the
horizontal distinction between number and the vertical distinction between case with
the levels n (nominative), a (accusative), d (dative), and g (genitive). The center is
formed by a nominal filler which happens to be unrestricted with respect to number
and combines the nominative and accusative case. This is the pronoun sie with the
category (s3&p3&a), serving simultaneously as (i) feminine singular nominative and
accusative, (ii) plural nominative and accusative, and (iii) the formal way of address-
ing the partner(s) of discourse in the nominative and accusative.

To the left and right of the center are placed the other third person singular and
plural noun phrases, respectively. Then follow the personal pronouns of second and
first person, symmetrical in singular and plural. Different fields are distinguished in
terms of person and number only on the level N, because only the nominative fillers
are restricted in these parameters.

The horizontal levels of cases N, A, D, and G are ordered in such a way that fields
covering more than one case, such as s3&p3&a (e.g., Peter), s3&a (e.g., es, das Kind,
die Frau), g&d (e.g., der Frau), and d&a (e.g., uns, euch) can be formed. The ver-
tical columns are arranged symmetrically around the center, forming the horizontal
sequence

s2, s1, sp3, p1, p2

in German, as compared to the English sequence

s3, s1, sp2, p1, p3

with s for singular, p for plural and 1, 2, 3 for person. Accordingly, the center sp2 of
English stands for second person singular and plural (you), while the center sp3 of
German stands for third person singular and plural (sie).

The distinctions between first person (I, we), second person (you), and third person
(he, she, it) may be interpreted as increasing degrees of distance D1, D2, and D3.
Combined with the different centers sp2 (you) of the English field of referents and
sp3 (sie) of its German counterpart, there result the following correlations:

1 There is one exception, ihr, which has two uses differing in person, case, and number. These
may be expressed in the common category (p2&d), but not graphically in terms of a single
occurrence.
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18.2.3 CENTERING AND DISTANCE IN FIELDS OF REFERENCE

The center of the English field of referents is focussed onto the medium distance D2,
while in German it is focussed onto the maximal distance D3. The peripheries are
focussed in English onto the maximal distance D3, and in German onto the medium
distance D2. The intermediate positions between center and peripheries are focussed
in both languages onto the minimal distance D1.

A strictly surface compositional analysis of different natural languages may thus
provide insight into their different coding methods – which would be obscured by
blindly multiplying out paradigm slots as in an exhaustive analysis like 18.2.1. Even
if one prefers to refrain from interpreting the fields of referents 17.2.1 and 18.2.2
cognitively as different language-inherent conceptualizations, there remains the fact
that the distinctive categorization is more concrete and combinatorially more efficient2

than corresponding exhaustive categorizations.
For the 14 kinds of nominal fillers there are 11 valency positions in German, repre-

sented as s1′, s13′, s2′, s23′, s13′, s2p2′, s3′, p13′, p2′, g′, d′, and a′:

18.2.4 AGREEMENT OF NOMINAL FILLERS AND VERBAL VALENCIES

2 The distinctive analysis uses only 14 different categories, in contrast to the 72 categories
of the exhaustive paradigm analysis. 72 is the product of three genders, two numbers, four
cases, and three persons.
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The valency positions in the finite verb forms of German fuse the first and third person
plural forms in the present and imperfect tense, represented as p13′, and the first and
third person singular forms of the imperfect tense, represented as s13′.

The internal and external agreement of basic and complex nominal fillers in German
are handled explicitly and completely by the variable definition of LA D2.

18.2.5 GERMAN LA GRAMMAR HANDLING COMPLEX FILLERS (LA D2)

LX = LX of LA D1 plus the nouns defined in 14.5.4, the determiners defined
in 18.1.1, and the following pronouns

[ich (s1) *], [du (s2) *], [er (s3) *], [es (s3&a) *], [wir (p1) *],
[ihr (p2&d) *], [sie (s3&p3&a) *], [deiner (g) *], [uns (d&a) *],
[euch (d&a) *], [mir (d) *], [dir (d) *], [ihm (d) *], [mich (a) *],
[dich (a) *], [ihn (a) *]

plus adjectives in various degrees
[schöne (e) *] [schönere (e) *] [schönste (e) *]
[schönen (en) *] [schöneren (en) *] [schönsten (en) *]
[schöner (er) *] [schönerer (er) *] [schönster (er) *]
[schönes (es) *] [schöneres (es) *] [schönstes (es) *]

plus finite main verb forms of differing valency structures
[gebe (s1′ d′ a′ v) *] [lese (s1′ a′ v) *] [schlafe (s1′ v) *]
[gibst (s2′ d′ a′ v) *] [liest (s23′ a′ v) *] [schläfst (s2′ v) *]
[gibt (s3′ d′ a′ v) *] [lesen (p13′ a′ v) *] [schläft (s3′ v) *]
[geben (p13′ d′ a′ v) *] [lest (p2′ a′ v) *] [schlafen (p13′ v) *]
[gebt (p2′ d′ a′ v) *] [las (s13′ a′ v) *] [schlaft (p2′ v) *]
[gab (s13′ d′ a′ v) *] [last (s2p2′ a′ v) *] [schlief (s13′ v) *]
[gabst (s2′ d′ a′ v) *] [lasen (p13′ a′ v) *] [schliefst (s2′ v) *]
[gaben (p13′ d′ a′ v) *] [schliefen (p13′ v) *]
[gabt (p2′ d′ a′ v) *] [schlieft (p2′ v) *]

variable definition
NP ∈ {s1, s2, s3, p1, p2, p2&d, g, g&d, d, a, s3&a, s3&d&a, d&a,p3&a, s3&p3&a}
NP′∈ {s1′, s13′, s2′, s23′, s2p2′, s3′, p13′, p2′, g′, d′, a′}
and if NP ∈ {g, d, a}, then NP′ is correspondingly g′, d′, or a′

if NP = p1, then NP′ = p13′
if NP = s1, then NP′ ∈ {s1′, s13′}
if NP = s2, then NP′ ∈ {s2′, s23′}
if NP = s3, then NP′ ∈ {s3′, s23′}
if NP = p3&a, then NP′ ∈ {p13′, a′}
if NP = p2&d, then NP′ ∈ {p2′, d′}
if NP = g&d, then NP′ ∈ {g′, d′}
if NP = d&a, then NP′ ∈ {d′, a′}
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if NP = s3&a, then NP′ ∈ {s3′, s23′, a′}
if NP = s3&d&a, then NP′ ∈ {s3′, s23′, d′, a′}
if NP = s3&p3&a, then NP′ ∈ {s3′, s23′, p13′, a′}

N ∈ {mn, m-g, m-np, m-gp, mgp, m-gp-d, f, n-g, -fg, -fd, n-gp, n-gp-d,
ndp-d, p, p-d, pd},

N′ ∈ {mn′, m-n′, f′, n-g′, -fg′, -fd′, p-d′, pd′}, and
if N ∈ {mn, -fg, -fd, f, p-d, pd}, then N′ is corresponding
if N = m-g, then N′ ∈ {mn′, m-n′}
if N = m-np, then N′ ∈ {-fg′, -fd′, p-d′, pd′ }
if N = m-gp, then N′ ∈ {mn′, -fd′, m-n′, p-d′, pd′}
if N = mgp, then N′ ∈ {-fg′, p-d′, pd′}
if N = m-gp-d, then N′ ∈ {mn′, -fd′, m-n′, p-d′}
if N = n-g, then N′ ∈ {n-g′, -fg′, -fd′}
if N = n-gp, then N′ ∈ {n-g′, -fg′, -fd′, p-d′, pd′}
if N = n-gp-d, then N′ ∈ {n-g′, -fg′, -fd′, p-d′}
if N = ndp-d, then N′ ∈ {-fd′, p-d′}
if N = p, then N′ ∈ {p-d′, pd′}

ADJ ∈ {e, en, es, er} and ADJ′ is corresponding
X, Y = .?.?.?.? (arbitrary sequence up to length 4)

STS =def {[(X) {1 DET+ADJ, 2 DET+N, 3 MAIN+FV}] }
DET+ADJ: (ADJ′ X) (ADJ) ⇒ (ADJ′ X) {4 DET+ADJ, 5 DET+N}
DET+N: (ADJ′ N′ X) (N) ⇒ (X) {6 MAIN+FV, 7 FV+MAIN}
MAIN+FV: (NP) (X NP′ Y v) ⇒ (X Y v) {8 FV+MAIN}
FV+MAIN: (X NP′ Y v) (Z NP) ⇒ (Z X Y v) {9 FV+MAIN, 10 DET+ADJ,

11 DET+N}
STF =def {[(v) rpMAIN+FV], [(v) rpFV+MAIN], [(v) rpDET+N] }

LA D2 handles the same 18 word order patterns as LA D1, but with the additional
capacity for complex nominal fillers. The categorial pattern of the rule FV+MAIN,
defined in LA D1 as (X NP′ Y v) (NP) ⇒ (X Y v), is generalized in LA D2 to
(X NP′ Y v) (Z NP) ⇒ (Z X Y v). In this way FV+MAIN can handle continua-
tions with elementary fillers (e.g., pronouns or proper names) as well as continuations
with (the beginning of) complex noun phrases.

18.3 Verbal Positions in English and German

The word order of English and German differs in the position of the finite – main or
auxiliary – verb in declarative main clauses. English has the verb in post-nominative
position, whereby the nominative is always the first valency filler. German has a
verb-second structure in declarative main clauses, whereby fillers, including the
nominative, may be placed freely. This difference is illustrated by the following
examples:
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18.3.1 FINITE VERB POSITION IN DECLARATIVE MAIN CLAUSES

English: post-nominative German: verb-second
1. Julia read a book Julia las ein Buch
2. *a book read Julia Ein Buch las Julia
3. Yesterday Julia read a book *Gestern Julia las ein Buch
4. *Yesterday read Julia a book Gestern las Julia ein Buch
5. Julia quickly read a book *Julia schnell las ein Buch
6. *While Mary slept, read Julia a book Als Maria schlief, las Julia ein Buch
7. While Mary slept, Julia read a book *Als Maria schlief, Julia las ein Buch

In clauses with a finite main verb and beginning with a nominative, English and Ger-
man may be alike, as shown by 1. In German, the positions of the nominative and
the accusative may be inverted (2), however, leading to a dissimilarity between the
two languages described in Sects. 16.4 and 16.5. The structure of 2 violates the post-
nominative rule of English, but satisfies the verb-second rule of German.

The word order difference in question shows up also in clauses with initial modi-
fiers, such as elementary adverbs (3, 4, 5) and adverbial clauses (6, 7). In English, the
preverbal nominative may be preceded (3, 7) or followed (5) by an adverbial, which
in German leads to a violation of the verb-second rule. In German, adverbials are
treated as constituents filling the preverbal position (4, 6), which in English leads to a
violation of the post-nominative rule.

In other words, adverbials occupy the preverbal position of declarative main clauses
exclusively in German, but non-exclusively in English. Because in German nominal
fillers may occur freely in postverbal position there is no reason to squeeze one of
them into a preverbal spot already occupied by a modifier. English, in contrast, marks
the nominative grammatically by its preverbal position. Rather than being prevented
from occurring in preverbal position, modifiers may share it with the nominative.

A second difference arises in the positions of finite auxiliaries and nonfinite main
verbs. In English, the parts of complex verb forms like is reading or has given must be
in contact position, i.e., contiguous. In German, they are typically separated, which
is known as distance position: in this case adverbs and/or nominals occur between
the finite auxiliary in second position and the nonfinite main verb at the end of the
clause.

18.3.2 NONFINITE MAIN VERB POSITION IN DECLARATIVE MAIN CLAUSES

English: contact position German: distance position
1. Julia has slept Julia hat geschlafen
2. Julia has read a book *Julia hat gelesen ein Buch
3. *Julia has a book read Julia hat ein Buch gelesen
4. Today Julia has read a book *Heute Julia hat gelesen ein Buch
5. *Today has Julia a book read Heute hat Julia ein Buch gelesen
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6. Julia has given M. a book today *Julia hat gegeben M. ein Buch heute
7. *Julia has M. today a book given Julia hat M. heute ein Buch gegeben

In declarative main clauses with a complex one-place verb, English and German may
be alike, as shown by 1. In the case of complex two- and three-place verbs, however,
the two languages diverge. The word orders in 2, 4, and 6 are grammatical in English,
but violate the distance position rule in German, whereby 4 also violates the verb-
second rule of German. The word orders 3, 5, and 7 are grammatical in German, but
violate the contact position rule of English.

The distance position of complex verb forms in declarative main clauses of German
is also called Satzklammer (sentential bracket).3 From the viewpoint of communica-
tion, the clause-final position of the nonfinite main verb serves, first, to mark the end
of the clause. Second, it keeps the attention of the hearer, whose interpretation has to
wait for the main verb. Third, it gives the speaker more time to select the main verb.
As a case in point, consider the following example:

Julia has the offer of the opposing party today this afternoon
Julia hat das Angebot der Gegenseite heute nachmittag abgelehnt. (declined)

verworfen. (refused)
kritisiert. (criticized)
zurückgewiesen. (rejected)

In English, the choice of the main verb must be decided very early, as shown by the
corresponding example Julia has declined/refused/criticized/rejected the offer of the
opposing party this afternoon.

A third word order difference between English and German arises in the position of
the – basic or complex – finite verb in subordinate clauses. In English, the position
of the verb in subordinate clauses is the same as in declarative main clauses, namely
post-nominative. In German, on the other hand, the verb is in clause-final position,
whereby in complex verb forms the nonfinite main verb precedes the finite auxiliary.

18.3.3 VERB POSITION IN SUBORDINATE CLAUSES

English: post-nominative German: clause final
1. before Julia slept bevor Julia schlief
2. before Julia had slept *bevor Julia hatte geschlafen
3. *before Julia slept had bevor Julia geschlafen hatte
4. before Julia bought the book *bevor Julia kaufte das Buch
5. *before Julia the book bought bevor Julia das Buch kaufte
6. before Julia had bought the book *bevor Julia hatte gekauft das Buch
7. *before the book a man bought bevor das Buch ein Mann kaufte

3 The Satzklammer is one of many structures of natural language syntax which systematically
violate the (defunct) principles of constituent structure analysis (Sect. 8.4).
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In subordinate clauses with a basic one-place verb, English and German may be alike,
as shown by 1. However, in the case of complex verb forms of arbitrary valencies
(2, 3, 6) and basic verbs of more than one valency (4, 5, 7), the two languages di-
verge. The word orders in 2, 4, and 6 are grammatical in English, but violate the
clause-final rule for the position of the finite verb in subordinate clauses of Ger-
man. The word orders 3, 5, and 7 are grammatical in German, but violate the post-
nominative rule of English, whereby 7 also violates the fixed order of nominative and
accusative.

From the viewpoint of communication, the clause-final position of the finite verb
in subordinate clauses has a function similar to that of the clause-final position of
the nonfinite main verb in declarative main clauses. It serves to mark the end of the
clause, keeps the hearer’s attention, and gives the speaker maximal time for selecting
the main verb.

18.4 Complex Verbs and Elementary Adverbs (LA D3)

German has two auxiliaries, haben (have) and sein (be), as well as a number of
modals, such as werden (will), können (can), wollen (want), dürfen (may), sollen
(should), and müssen (must). Their nominative restrictions in the present and im-
perfect are the same as those of German main verbs.4

18.4.1 LA PARADIGMS OF GERMAN AUXILIARIES AND MODALS

[bin (s1′ s′ v) *] [habe (s1′ h′ v) *] [kann (s13′ m′ v) *]
[bist (s2′ s′ v) *] [hast (s2′ h′ v) *] [kannst (s2′ m′ v) *]
[ist (s3′ s′ v) *] [hat (s3′ h′ v) *] [können (p13′ m′ v) *]
[sind (p13′ s′ v) *] [haben (p13′ h′ v) *] [könnt (p2′ m′ v) *]
[seid (p2′ s′ v) *] [habt (p2′ h′ v) *] [konnte (s13′ m′ v) *]
[war (s13′ s′ v) *] [hatte (s13′ h′ v) *] [konntest (s2′ m′ v) *]
[warst (s2′ s′ v) *] [hattest (s2′ h′ v) *] [konnten (p13′ m′ v) *]
[waren (p13′ s′ v) *] [hatten (p13′ h′ v) *] [konntet (p2′ m′ v) *]
[wart (p2′ s′ v) *] [hattet (p2′ h′ v) *]

The segments s′ (sein), h′ (haben), and m′ (modal) control the identity-based agree-
ment between the finite auxiliary and a suitable nonfinite form of the main verb. As
shown in 18.4.2, s and h agree with the past participles of different verbs (e.g., ist
begegnet, but hat gegeben), while modals combine with the unmarked form of the
verb (infinitive), e.g., will sehen.

4 Cf. 18.2.5; compare also 17.3.1. For simplicity, the ‘Konjunktiv’ (subjunctive) is omitted
in 18.2.5.
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Whether a past participle agrees with the auxiliary h (have) or s (be) is a lexical
property of the main verb and is related to the semantic phenomenon of aspect. Some
verbs may combine with either h or s, e.g., ist ausgeschlafen (emphasizing the state
of having slept enough) versus hat ausgeschlafen (emphasizing the completion of the
process).

The unmarked form of the verb, e.g., sehen, is used for the first and third person
plural of the present tense and as the infinitive, with one exception: the infinitive of
the auxiliary sein differs from the finite form in question, i.e., sind.5 To bring out the
parallel nature of complex verbs built with auxiliaries and modals, we provide the
infinitive temporarily with its own category, based on the modal category segment m,
in analogy to English (17.3.2).

18.4.2 COMPLEX VERB FORMS OF GERMAN

To explain the special structure of German auxiliary constructions in a strictly time-
linear derivation order, let us first consider declarative main clauses with a finite main
verb. There, the valency carrier is in second position, such that for incoming fillers all
the valency positions are available from the beginning. For example, in

Die Frau gab dem Kind den Apfel

or

Dem Kind gab die Frau den Apfel,

the initial nominal filler cancels a compatible position in the adjacent main verb, then
the following nominal fillers cancel the remaining positions postverbally.

In corresponding auxiliary constructions, on the other hand, the valency carrier is
not present from the beginning, with the result that incoming fillers may be without
suitable valency positions for a while. For example, in

Die Frau hat dem Kind den Apfel gegeben

the first filler cancels the nominative position in the auxiliary, but the dative and the ac-
cusative have no corresponding valency positions until the nonfinite main verb arrives

5 The corresponding exception of the English auxiliary be is the form am for the first person
singular present tense.
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at the end. Furthermore, if the first filler is not a nominative, as in

Dem Kind hat die Frau den Apfel gegeben,

no valency position at all can be canceled in the combination of the initial nominal
filler and the auxiliary.

Thus, in auxiliary constructions the fillers often have to be remembered in the sen-
tence start category until the valency carrier is added. This requires the following
extensions of LA D2: (i) the combination of the first syntagma and the auxiliary
(MAIN+FV revised as +FV), (ii) the combination of the sentence start ending in
the auxiliary and the next constituent(s) (FV+MAIN revised as +MAIN), and (iii)
adding the nonfinite main verb in clause final position, whereby the collected fillers
must cancel the corresponding positions in the nonfinite main verb (new rule +NFV).

In step (i) the following case distinctions must be made:

18.4.3 +FV ALTERNATIVES OF ADDING THE AUXILIARY

In clause 1, the nominative filler cancels the nominative valency in the finite auxiliary.
In clause 2, the presence of the auxiliary segment triggers the oblique filler to be added
to the category. In clause 3, a topicalized nonfinite main verb cancels the agreeing
auxiliary segment and adds its valency positions, resulting in a category equivalent
to a corresponding finite main verb. In clause 5, the combination of an adverb and a
finite auxiliary leaves the category of the latter unchanged.

It would be possible to treat each clause as a separate rule. However, because the
clauses are linguistically related and share the same rule package we introduce a nota-
tion for combining several clauses into a complex categorial operation. This notation,



18.4 Complex Verbs and Elementary Adverbs (LA D3) 365

illustrated below, is a subtheoretical variant like multicats. It is equivalent to the stan-
dard notation of the algebraic definition and does not change the formal status of the
grammars with respect to their complexity.

18.4.4 EXTENDING MAIN+FV INTO +FV USING CLAUSES

+FV: 1. (NOM) (NOM′ AUX′ v) ⇒ (AUX′ v)
2. (OBQ) (X AUX′ v) ⇒ (OBQ X AUX′ v)
3. (X AUX) (NOM′ AUX′ v) ⇒ (NOM′ X v)
4. (NP) (X NP′ Y v) ⇒ (X Y v)
5. (Y ADV) (X v) ⇒ (Y X v) {+MAIN, +NFV, +FV, +IP}

The input conditions of the clauses are applied sequentially to the input. When a
clause matches the input, the associated output is derived and the rule application
is finished.6 Clauses 1, 2, 3, and 5 correspond to those in 18.4.3. Clause 4 handles
the standard combination of a nominal filler and a finite main verb inherited from
MAIN+FV in LA D2 (18.2.5).

Next consider step (ii), i.e., the continuations after the finite auxiliary.

18.4.5 +MAIN ALTERNATIVES AFTER THE AUXILIARY

In clause 1, the auxiliary is followed by a nominative which cancels the nominative
valency position in the auxiliary. In clause 2, the auxiliary is followed by an oblique
filler, whereby the presence of the auxiliary segment triggers the addition of the next
word category segments to the sentence start. In clause 4, the continuation with an
adverb has no effect on the syntactic category of the sentence start.

These alternatives are joined with the FV+MAIN combination of a finite main verb
and a nominal filler (clause 3) into the new rule +MAIN.

6 There is the additional possibility of bracketing several clauses to indicate that they apply
in parallel, which may result in more than one continuation path.
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18.4.6 EXTENDING FV+MAIN INTO +MAIN USING CLAUSES

+MAIN: 1. (X NOM′ Y AUX′ v) (Z NOM) ⇒ (Z X Y AUX′ v)
2. (X AUX′ v) (Y OBQ) ⇒ (Y OBQ X AUX′ v)
3. (X NP′ Y v) (Z NP) ⇒ (Z X Y v)
4. (X V) (Y ADV) ⇒ (Y X v) {+ADJ, +N, +MAIN,

+NFV, +FV, +IP}

Clause 2 of +MAIN allows the addition of arbitrarily many oblique fillers. The re-
sulting sentence is only grammatical, however, if the nonfinite main verb added at the
end happens to provide a corresponding set of valency positions.

Step (iii) consists in adding the nonfinite main verb concluding the clause. It is
handled by the new rule +NFV, which checks identity-based agreement between the
auxiliary and the nonfinite main verb illustrated in 18.4.2. Furthermore, the oblique
fillers collected in the sentence start cancel all the oblique valency positions in the
nonfinite main verb (the nominative is already canceled at this point). The categorial
operation of +NFV may be illustrated as follows:

18.4.7 CATEGORIAL OPERATION OF +NFV

A novel aspect of +NFV is the concept of agreeing lists. A list X of valency fillers
and a list X′∼ of valency positions are in linguistic agreement, written as [X = X′∼], if
they are of equal length and for each filler in X there is an agreeing position in X′∼ and
vice versa. List agreement is easily programmed and will also be used in the handling
of German subordinate clauses (Sect. 18.5).

18.4.8 GERMAN GRAMMAR HANDLING COMPLEX VERB FORMS (LA D3)

LX = LX of LA D2 plus auxiliaries defined in 18.4.1, plus
nonfinite main verb form of 18.4.2, plus adverbials
[gestern (adv) *], [hier (adv) *], [jetzt (adv) *], plus punctuation signs
[. (v′ decl) *], [? (vi′ interrog) *], [? (v′ interrog) *]

variable definition = variable definition of LA D2 plus
NOM ∈ NP \ {d, a, d&a} nominative filler7

NOM′ ∈ NP \ {d, a} nominative valency positions

7 If Y is a subset of X, then the notation X\Y (X minus Y) stands for the set of elements of
X without the elements of Y. This notation should not be confused with the definition of
categories in C Grammar (7.4.3).
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OBQ ∈ {d, a, d&a} oblique filler
AUX ∈ {h, b, m}, auxiliaries and modals
VT ∈ {v, vi}, mood marker
SM ∈ {decl, interrog}, sentence mood

STS =def {[(X) {1 +ADJ, 2 +N, 3 +FV, 4 +NFV}] }
+ADJ: (ADJ′ X) (ADJ) ⇒ (ADJ X) {5 +ADJ, 6 +N}
+N: (ADJ′ N′ X) (N) ⇒ (X) {7 +FV, 8 +MAIN, 9 +NFV, 10 +IP}
+FV: (NOM) (NOM′ AUX′ v) ⇒ (AUX′ v)

(OBQ) (X AUX′ v) ⇒ (OBQ X AUX′ v)
(X AUX) (NOM′ AUX′ v) ⇒ (NOM′ X v)
(NP) (X NP′ Y v) ⇒ (X Y v)
(ADV) (X v) ⇒ (X v) {11 +MAIN, 12 +NFV, 13 +IP}

+MAIN: (X NOM′ Y AUX′ v) (Z NOM) ⇒ (Z X Y AUX′ v)
(X AUX′ v) (Y OBQ) ⇒ (Y OBQ X AUX′ v)
(X NP′ Y v) (Z NP) ⇒ (Z X Y v)
(X v) (Y ADV) ⇒ (Y X v) {14 +ADJ, 15 +N, 16 +MAIN,

17 +NFV, 18 +FV, 19 +IP}
+NFV: (X AUX′ v) (X′∼ AUX)

(X = X′∼) ⇒ (v) {20 +IP}
+IP: (VT) (VT′ SM) ⇒ (SM) {}
STF =def {[(SM) rp+ip]}

While +FV and +MAIN show the use of clauses, +NFV shows the use of a sub-
clause. If the pattern of the main clause of +NFV is matched by the input, then the
indented subclause checks whether the list agreement between the values of X and the
values of X′∼ is satisfied. Only if this is the case is an output derived. Especially in
larger applications, subclauses allow a natural structuring of LA rules into main con-
ditions and subconditions, improving both linguistic transparency and computational
efficiency.

The rule +IP adds full stops or question marks to declarative main clauses, as in
Julia hat gestern ein Buch gelesen? In LA D4, +IP will be adopted without change.
Other sentence moods are based on prefinal derivation steps (Sect. 18.5).

LA D3 provides a complete treatment of word order variations and word order re-
strictions in German declarative main clauses with and without auxiliaries. It handles
all internal and external agreement restrictions and valency phenomena arising in 980
kinds of clauses which differ with respect to the valency structure of the verb, basic vs.
complex noun phrases, basic vs. complex verb forms including topicalized nonfinite
main verbs, and declarative vs. interrogative mood. If the possible adding of adverbs
in various positions is taken into account, the number of constructions handled by
LA D3 is theoretically infinite.

The application of +NFV with the canceling of agreeing lists is illustrated by the
following derivation, the transition numbers of which are those of LA D3.
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18.4.9 DECLARATIVE WITH DATIVE PRECEDING AUXILIARY

Whether a nominal argument is added to the sentence start category or used to cancel
a valency position is determined by the presence/absence of an AUX segment, i.e., h′,
b′, or m′, in the carrier and by whether the filler is a nominative or not.

18.5 Interrogatives and Subordinate Clauses (LA D4)

The distance position of auxiliary and main verb in declarative sentences arises in
similar form in interrogatives with auxiliaries and in subordinate clauses. Consider
the following examples of interrogatives with the verbal components in italics:

18.5.1 INTERROGATIVE WITH AND WITHOUT AUXILIARY

1. Hat die Frau dem Kind gestern den Apfel gegeben?
(Has the woman the child yesterday the apple given ?)

2. Hat dem Kind gestern die Frau den Apfel gegeben?
3. Hat gestern die Frau dem Kind den Apfel gegeben?
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4. Gab die Frau dem Kind gestern den Apfel ?
(Gave the woman the child yesterday the apple?)

5. Gab gestern die Frau dem Kind den Apfel?

A sentential bracket (Satzklammer) is formed in 1, 2, and 3 by the initial auxiliary and
the final nonfinite main verb. The auxiliary is followed in 1 by the nominative, in 2 by
an oblique filler, and in 3 by an adverb. The examples 4 and 5 begin with a finite main
verb, followed by a nominal filler and an adverb, respectively. The initial finite verb
is combined with a main component by the new rule ?+MAIN.

18.5.2 ?+MAIN STARTING AN INTERROGATIVE MAIN CLAUSE

?+MAIN is similar to +MAIN except for changing the verb segment from v to vi,
thus enforcing the addition of a question mark at the end. By including ?+MAIN, but
not +MAIN, in the start state’s rule package, a sentence-initial finite verb is treated
obligatorily as the beginning of an interrogative.

After the application of ?+MAIN, the derivation of interrogatives is based on exist-
ing rules. For example, sentence 1 in 18.5.1 is based on the rule sequence ?+MAIN,
+N, +MAIN, +N, +MAIN, +MAIN, +N, +NFV, +IP, while sentence 5 is based on
the rule sequence ?+MAIN, +MAIN, +N, +MAIN, +N, +MAIN, +N, +IP.

Another kind of sentential bracket is formed by subordinate clauses. As illustrated
below, the bracket begins with the subordinating conjunction, to the category of which
the subsequent nominal fillers are added. The end of the bracket is the verb. It requires
list agreement to cancel the fillers collected in the sentence start.

18.5.3 SUBORDINATE CLAUSES WITH AND WITHOUT AUXILIARY

1. Als die Frau dem Kind gestern den Apfel gegeben hat
(When the woman the child yesterday the apple given has)

2. Als dem Kind gestern die Frau den Apfel gegeben hat
3. Als gestern die Frau dem Kind den Apfel gegeben hat
4. Als die Frau dem Kind gestern den Apfel gab

(When the woman the child yesterday the apple gave)
5. Als gestern die Frau dem Kind den Apfel gab

The beginning of adverbial subclauses is handled by an extension of +MAIN:
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18.5.4 +MAIN STARTING AN ADVERBIAL SUBCLAUSE

The variable HCA (for higher clause attachment) is specified for the values v, vi,
and adv. The addition of nominal fillers to the sentence start category is triggered
by the presence of the nonfinal v′, provided here by the subordinating conjunction.
The clause-final finite main verb is added by an extension of +FV.

18.5.5 +FV CONCLUDING SUBCLAUSE WITH FINITE MAIN VERB

If the adverbial clause has a preverbal position in the higher sentence, the adv seg-
ment in the category of the subordinating conjunction serves as the result segment.
Once the derivation of the adverbial subclause is completed, it has the category (adv)
and is treated like an elementary adverb (e.g., gestern in 18.4.3, 5). If the adverbial
clause has a postverbal position in the higher clause, the adv-segment is deleted in the
process of adding the subordinating conjunction (cf. 18.5.6).

Adverbial clauses in any position use the v′ segment of the subordinating conjunc-
tion category as the main node for the duration of the subclause derivation. This means
that the preverbal nominal fillers are attached to the left of the current v′ segment. The
v′ segment of the current subclause is always positioned leftmost in the category of
the sentence start.

18.5.6 BEGINNING OF AN ADVERBIAL SUBCLAUSE IN POSTVERBAL POSITION

The next combination finishes the subordinate clause with the finite main verb.
Thereby everything up to and including the first non-final v′ is canceled and the cate-
gory is the same as before the adverbial subclause was started.
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18.5.7 COMPLETION OF AN ADVERBIAL SUBCLAUSE IN POSTVERBAL

POSITION

In this manner, adverbial subclauses may also be nested, allowing center embedding
of arbitrary depth.

18.5.8 NESTING OF ADVERBIAL SUBCLAUSES IN PREVERBAL POSITION

The nesting is indicated by the presence of more than one v′ segment in the sentence
start category, but only as long as the nested clauses have not been completed.

Subclauses with complex verb phrases are handled in the same way, except that the
nonfinite main verb and the finite auxiliary are added in two steps.

18.5.9 +NFV ADDS NONFINITE MAIN VERB TO SUBCLAUSE

This example illustrates that the nominative filler may be positioned between oblique
fillers. To achieve list agreement between the oblique fillers and their valency positions
in the nonfinite verb, the sublists X1 and X2 are concatenated, written as (X1 ◦ X2).
With this notation, the desired list agreement may be formulated as [(X1◦X2) = X′∼]
(cf. +NFV in LA D4, defined in 18.5.11).

The second and final step of concluding a subordinate clause with a complex verb
is adding the finite auxiliary.

18.5.10 +FV CONCLUDES SUBCLAUSE WITH FINITE AUXILIARY
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The nominative segments have to agree.
The handling of interrogatives and adverbial subclauses is formalized as the

LA Syntax LA D4 for German.

18.5.11 LAG HANDLING INTERROGATIVE AND ADVERBIAL CLAUSES (LA D4)

LX = LX of LA D3 plus subordinating conjunctions
[als (v′ adv) *], [nachdem (v′ adv) *], [obwohl (v′ adv) *]

variable definition = variable definition of LA D3 plus HCA ∈ {v, vi, adv}
STS =def {[(X) {1 +ADJ, 2 +N, 3 +FV, 4 +MAIN, 5 ?+MAIN}] }
+N: (ADJ′ N′ X) (N) ⇒ (X) {6 +FV, 7 +MAIN, 8 +NFV, 9 +IP}
+ADJ: (ADJ′ X) (ADJ) ⇒ (ADJ′ X) {10 +ADJ, 11 +N}
?+MAIN: (NOM′ AUX′ v)(z NOM) ⇒ (Z AUX′ vi)

(NOM′ AUX′ v)(Y OBQ) ⇒ (Y OBQ NOM′ AUX′ vi)
(X NP′ Y v)(Z NP) ⇒ (Z X Y vi)
(X v)(Y ADV) ⇒ (Y X vi) {12 +ADJ, 13 +N, 14 +MAIN,

15 +NFV, 16 +IP}
+FV: (NOM AUX v′ Y HCA) (NOM′ AUX′ v) ⇒ (Y HCA)

(X v′ Y HCA)(X′∼ v)
[X = X′∼] ⇒ (Y HCA)

(NOM) (NOM′ AUX′ v) ⇒ (AUX′ v)
(OBQ) (X AUX′ v) ⇒ (OBQ X AUX′ v)
(X AUX) (NP′ AUX′ v) ⇒ (X NP′ v)
(NP) (X NP′ Y v) ⇒ (X Y v)
(ADV) (X v) ⇒ (X v) {17 +MAIN, 18 +NFV, 19 +FV, 20 +IP}

+MAIN: (X NOM′ Y AUX′ VT) (Z NOM) ⇒ (Z X Y AUX′ VT)
(X AUX′ VT) (Y OBQ) ⇒ (Y OBQ X AUX′ VT)
(X NP′ Y VT) (Z NP) ⇒ (Z X Y VT)
(X VT′ y HCA) (Z NP) ⇒ (Z NP X VT′ Y HCA)
(X VT) (Y ADV) ⇒ (Y X VT) {21 +ADJ, 22 +N, 23 +MAIN,

24 +NFV, 25 +FV, 26 +IP}
+NFV: (X1 Nom X2 VT′ Y HCA) (X′∼ AUX)

[(X1 ◦ X2) = X′∼] ⇒ (NOM AUX vt ′ y HCA)
(X AUX′ VT) (x′∼ AUX) ⇒ (VT) {27 +FV, 28 +IP}

+IP: (VT) (VT′ SM) ⇒ (SM) {}

STF =def {[(sm) rp+ip]}

LA D4 extends LA D3 to yes/no-interrogatives and adverbial subclauses, each with
simple and complex verb forms, whereby the adverbial subclauses may take various
positions, including center embedding.

LA D4 has the following finite state transition network:
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18.5.12 THE FINITE STATE BACKBONE OF LA D4

(ii) 1, 10, 12, 21 +ADJ (vi) 8, 15, 18 +NFV
(iii) 2, 11, 13, 22 +N (vii) 5 ?+MAIN
(iv) 3, 6, 17, 19, 27 +FV (viii) 9, 16, 20, 26 +IP
(v) 4, 7, 14, 23, 24, 25 +MAIN

Extending LA D3 to LA D4 requires only one additional rule, ?+MAIN, and one
additional clause in +NFV. The extension consists primarily in adding transitions,
implemented by writing additional rule names into rule packages. While LA D3 has
six rules and 19 transitions, LA D4 has seven rules and 28 transitions. The handling
of agreement and word order variation of LA D3 is preserved in LA D4. Like its
predecessors, LA D4 is a C1 LAG and parses in linear time.

At this point the syntactic coverage of English and German could easily be extended
further and further. For the methodological reasons explained in Sect. 18.1, however,
the existing grammars should first be verified in the following areas:

1. Syntactic verification
The formal grammars for English and German developed so far should be im-
plemented as parsers and tested automatically on increasing sets of positive and
negative test sentences.

2. Morphological and lexical verification
The word form recognition of these grammars should be changed from the pre-
liminary full-form lexica LX to suitable applications of LA Morph and be tested
on corpus-based word lists in order to provide extensions with sufficient data
coverage of the lexicon and the morphology.

3. Functional verification in communication
The formal grammars and parsers for natural languages should be supplemented
with an automatic semantic and pragmatic interpretation that is (i) in line with
the basic assumptions of the SLIM theory of language and (ii) demonstrated to
be functional in automatic applications.

Verification steps 1 and 2 have been provided by the extensive LA Grammars for
English and German described in NEWCAT and CoL, from which LA E1 – LA E3
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and LA D1 – LA D4 were abstracted. The details of verification step 3, on the other
hand, require a closer theoretical description, which will be the topic of Part IV.

Exercises

Section 18.1
1. Explain the three steps and two phases of developing an LA Grammar for the

syntactic description of a new language.
2. What is the structure of complex noun phrases in German and how does it differ

from English?
3. Describe the agreement of German adjectives.
4. Which rule in LA D1 must be slightly generalized for the derivation of 18.1.4,

and how?
5. Give derivations like those of 18.1.4 for the sentences der jungen Frau gefiel

der schöne grüne Baum, die junge Frau gab dem kleinen Kind einen Apfel, dem
kleinen Kind gab die junge Frau einen Apfel, and einen Apfel gab die junge Frau
dem kleinen Kind. Explain why the time-linear derivation of complex nominal
fillers in pre- and postverbal position can be handled by the same rules.

Section 18.2
1. Explain in what two respects traditional paradigms, e.g., of German noun

phrases, are misleading from a syntactic point of view. Why are traditional
paradigms not surface compositional?

2. Compare the abstract field of referents of German (18.2.2 and 18.2.4) and En-
glish (17.2.1). Explain their surface compositional motivation and relate them to
traditional paradigms.

3. Because the genitive case is becoming obsolete in its function as a nominal
filler/valency position, you may simplify 18.2.2 for the purposes of modern Ger-
man. How many fields are there after eliminating the genitive?

4. Describe the agreement between nominal fillers and finite verbs in German.
5. Explain the handling of external and internal agreement of complex noun phrases

in LA D2.
6. Provide a finite state backbone – analogous to 17.4.2 – for LA D2 using the

transition numbers given in 18.2.5.

Section 18.3
1. What is the difference between a post-nominative and a verb-second word order?

Give examples from English and German.
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2. Do adverbials play a role in the word order specification of English or German?
3. What is the difference between contact and distance positions in complex verb

constructions? Give examples from English and German.
4. Explain why the sentential bracket (Satzklammer) in German is in systematic

conflict with the principles of constituent structure 8.4.3.
5. Is it possible to motivate distance position in terms of communicative function?
6. Compare the word order of subordinate clauses in English and German.
7. Why does the word order of auxiliary constructions in declarative main clauses

and in subordinate clauses of German pose an apparent problem for the time-
linear filling of valency positions?

Section 18.4
1. Describe the categorial structure of complex verb forms in German.
2. Explain the five categorial alternatives which arise from adding a finite auxiliary

in declarative main clauses of German and describe how they are formalized in
the rule +FV.

3. Explain the four categorial alternatives which arise from continuing after a fi-
nite auxiliary in declarative main clauses of German and describe how they are
formalized in the +MAIN.

4. Describe the role of list agreement in the rule +NFV.
5. Why does the variable definition of LA D3 specify the variables NOM and NOM′

in addition to NP and NP′?
6. Provide a finite state backbone – analogous to 17.5.5 – for LA D3 using the

transition numbers given in 18.4.8.

Section 18.5
1. Explain why German yes/no-interrogatives with auxiliaries are the maximal form

of a sentential bracket.
2. Why is there a new rule ?+MAIN for the beginning of yes/no-interrogatives

rather than handling its function by existing +MAIN?
3. Compare the categorial operations of ?+MAIN and +MAIN in 18.5.11.
4. Why is LA D4 a C1 LAG?
5. Determine the grammatical perplexity of LA D4. Does the use of rule clauses and

subclauses affect the perplexity value?
6. Extend LA D4 to a handling of prepositional phrases in postnominal position as

in der Apfel + auf dem Tisch, and in adverbial position as in Auf dem Tisch +
lag. Take into account the semantic analysis of prepositional phrases presented
in Section 12.5. Adapt the finite state backbone 18.5.12 to your extension.
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Semantics and Pragmatics



19. Three Kinds of Semantics

Part I presented the basic mechanism of natural communication using the example of a
talking robot. Part II explained the complexity-theoretic aspects of syntactic analysis.
Part III developed detailed morphological and syntactic analyses of natural language
surfaces. Based on these foundations, we turn in Part IV to the semantic and pragmatic
interpretation of syntactically analyzed expressions in natural language interpretation
and production.

First, traditional approaches to semantic interpretation will be described in
Chaps. 19–21, explaining basic notions, goals, methods, and problems. Then a se-
mantic and pragmatic interpretation of LA Grammar within the SLIM theory of lan-
guage will be developed in Chaps. 22–24. The formal interpretation is implemented
computationally as a content-addressable database system called a word bank.

Section 19.1 explains the structure common to all systems of semantic interpre-
tation. Section 19.2 compares three different kinds of formal semantics, namely the
semantics of the logical languages, the programming languages, and the natural lan-
guages. Section 19.3 illustrates the functioning of logical semantics with a simple
model-theoretic system and explains the underlying theory of Tarski. Section 19.4
shows why the procedural semantics of the programming languages is independent of
Tarski’s hierarchy of metalanguages and details the special conditions a logical calcu-
lus must fulfill in order to be suitable for an implementation as a computer program.
Section 19.5 explains why a complete interpretation of natural language within log-
ical semantics is impossible and describes Tarski’s argument to this effect, based on
the Epimenides paradox.

19.1 Basic Structure of Semantic Interpretation

The term semantics is used in various fields of science. In linguistics, semantics is a
component of grammar which derives representations of meaning from syntactically
analyzed natural surfaces. In philosophy, semantics assigns set-theoretic denotations
to logical formulas in order to characterize truth and to serve as the basis for certain
methods of proof. In computer science, semantics consists in executing commands of
a programming language automatically as machine operations.
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Even though the semantics in these different fields of science differ substantially in
their goals, their methods, their applications, and their form, they all share the same
basic two level structure consisting of syntactically analyzed language expressions
and associated semantic structures. The two levels are systematically related by means
of an assignment algorithm.

19.1.1 THE TWO LEVEL STRUCTURE OF SEMANTIC INTERPRETATION

For purposes of transmission and storage, semantic content is coded into surfaces of
language (representation). When the content is needed, any speaker of the language
may reconstruct it by analyzing the surface.1 The reconstruction consists in (i) syn-
tactic analysis, (ii) retrieval of word meanings from the lexicon, and (iii) deriving the
meaning of the whole by assembling the meanings of the parts as specified by the
syntactic structure of the surface.

The expressive power of semantically interpreted languages resides in the fact that
the inverse procedures of representing and reconstructing content are realized auto-
matically: a semantically interpreted language may be used correctly without the user
having to be conscious of these procedures, or even having to know or understand
their details.

For example, the programming languages summarize frequently used sequences of
elementary operations as higher functions, the names of which the programmer may
then combine into complex programs. These work in the manner intended even though
the user is not aware of – and does not care about – the complex details of the machine
or assembler code operations.

A logical language may likewise be used without the user having to go through
the full details of the semantic interpretation. One purpose of a logical syntax is to
represent the structural possibilities and restrictions of the semantics in such a way
that the user can reason truly2 on the semantic level based solely on the syntactic
categories and their combinatorics.

1 For example, it is much easier to handle the surfaces of an expression like 36 · 124 than
to execute the corresponding operation of multiplication semantically by using an abacus.
Without the language surfaces one would have to slide the counters on the abacus 36 times
124 ‘semantically’ each time this content is to be communicated. This would be tedious,
and even if the persons communicating were to fully concentrate on the procedure it would
be extremely susceptible to error.

2 In the sense of always going from true premises to true conclusions.
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The natural languages are also used by the speaker-hearer without conscious knowl-
edge of the structures and procedures at the level of semantics. In contradistinction to
the artificial languages of programming and logic, for which the full details of their
semantics are known at least to their designers and other specialists, the exact details
of natural language semantics are not known directly even to science.

19.2 Logical, Programming, and Natural Languages

The two level structure common to all genuine systems of semantics allows one to
control the structures on the semantic level by means of syntactically analyzed sur-
faces. In theory, different semantic interpretations may be defined for one and the
same language, using different assignment algorithms. In practice, however, each kind
of semantics has its own characteristic syntax in order to achieve optimal control of
the semantic level via the combination of language surfaces.

The following three kinds of semantics comply with the basic structure of semantic
interpretation shown in 19.1.1:

19.2.1 THREE DIFFERENT KINDS OF SEMANTIC SYSTEMS

1. Logical languages
These originated in philosophy.3 Their complete expressions are called proposi-
tions. The logical languages are designed to determine the truth value of arbi-
trary propositions relative to arbitrary models. They have a metalanguage-based
semantics because the correlation between the two levels is based on a metalan-
guage definition.

2. Programming languages
These are motivated by a practical need to simplify the interaction with comput-
ers and the design of software. Their expressions are called commands, which
may be combined into complex programs. They have a procedural semantics
because the correlation between the levels of syntax and semantics is based on
the principle of execution, i.e., the operational realization of commands on an
abstract machine which is usually implemented electronically.

3. Natural languages
These evolve naturally in their speech communities and are the most power-
ful and least understood of all semantically interpreted systems. Their expres-
sions are called surfaces. Linguists analyze the preexisting natural languages
syntactically by reconstructing the combinatorics of their surfaces explicitly as
formal grammars. The associated semantic representations have to be deduced
via the general principles of natural communication because the meanings1

3 An early highlight is the writing of Aristotle, in which logical variables are used for the first
time.
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(4.3.3), unlike the surfaces, have no concrete manifestation. Natural languages
have a convention-based semantics because the word surfaces (types) have their
meaning1 assigned by means of conventions (de Saussure’s first law, 6.2.2).

On the one hand, the semantic interpretations of the three kinds of languages all share
the same two level structure. On the other hand, their respective components differ in
all possible respects: they use (i) different language expressions, (ii) different assign-
ment algorithms, and (iii) different objects on the semantic level:

19.2.2 THREE KINDS OF SEMANTIC INTERPRETATION

The most important difference between the semantic interpretation of artificial and
natural languages consists in that the interpretation of artificial languages is limited
to the two level structure of their semantics, whereas the interpretation of natural
languages is based on the [2+1] level structure (4.2.2) of the SLIM theory of language.

Thus, in logical and programming languages the interpretation is completed on the
semantic level. The natural languages, in contrast, have an additional interpretation
step which is as important as the semantic interpretation. This second step is the prag-
matic interpretation in communication. It consists in matching the structures of the
semantic level with corresponding structures of an appropriate context of use.

In the abstract, six relations may be established between the three basic kinds of
semantics:

19.2.3 MAPPING RELATIONS BETWEEN THE THREE KINDS OF SEMANTICS

We represent these relations as N→L, N→P, L→N, L→P, P→N, and P→L, where
N stands for the natural languages, L for the logical languages, and P for the program-
ming languages.

In reality, there has evolved a complicated diversity of historical, methodological,
and functional interactions between the three systems. These relations may be charac-
terized in terms of the notions replication, reconstruction, transfer, and composition:
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(a) Replication
The logical languages evolved originally as formal replications of selected natu-
ral language phenomena (N→L). Programming languages like Lisp and Prolog
were designed to replicate selected aspects of the logical languages procedurally
(L→P). The programming languages replicate phenomena of natural language
also directly, such as the concept of ‘command’ (N→P).

(b) Reconstruction
When an artificial language has been established for some time and has achieved
an independent existence of its own, it may be used to reconstruct the language it
was originally designed to replicate in part. A case in point is the attempt in theo-
retical linguistics to reconstruct formal fragments of natural language in terms of
logic (L→N). Similarly, computational linguistics aims at reconstructing natural
languages by means of programming languages (P→N). One may also imagine
a reconstruction of programming concepts in a new logical language (P→L).

(c) Transfer
The concentrated efforts to transfer methods and results of logical proof theory
to programming languages (L→P)4 have led to important results. A simple, gen-
eral transfer is not possible, however, because these two kinds of language use
different methods, structures, and ontologies for different purposes.5 Attempts in
philosophy of language to transfer the model-theoretic method to the semantic
analysis of natural language (L→N) have been only partially successful as well.6

(d) Combination
Computational linguistics aims at modeling natural communication with the help
of programming languages (P→N), whereby methods and results of the logical
languages play a role in both the construction of programming languages (L→P)

and the analysis of natural language (L→N). This requires a functional overall
framework for combining the three kinds of language in a way that utilizes their
different properties while avoiding redundancy as well as conflict.

The functioning of the three kinds of semantics will be explained below in more detail.

19.3 Functioning of Logical Semantics

In logical semantics, a simple sentence like Julia sleeps is analyzed as a proposition
which is either true or false. Which of these two values is denoted by the proposition
depends on the state of the world relative to which the proposition is interpreted.

4 Scott and Strachey (1971).
5 The transfer of logical proof theory to an automatic theorem prover necessitates that each

step – especially those considered ‘obvious’ – be realized in terms of explicit computer
operations (Weyhrauch 1980). This requirement has already modified modern approaches
to proof theory profoundly (P→L reconstruction).

6 Sect. 19.4.
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The state of the world, called the model, is defined in terms of sets and set-theoretic
operations.

19.3.1 INTERPRETATION OF A PROPOSITION

By analyzing the surface Julia sleeps formally as sleep (Julia) the verb is characterized
syntactically as a functor and the name as its argument.

The lexical part of the associated semantic interpretation (word semantics) assigns
denotations to the words – here the set of all sleepers to the verb and the individual
Julia to the proper name. The compositional part of the semantics derives denotations
for complex expressions from the denotations of their parts (4.4.1). In particular, the
formal proposition sleep (Julia) is assigned the value true (or 1) relative to the model
if the individual denoted by the name is an element of the set denoted by the verb.
Otherwise, the proposition denotes the value false (or 0).

A logical language requires definition of (1) a lexicon in which the basic expressions
are listed and categorized, and (2) a syntax which provides the rules for combining the
basic expressions into well-formed complex expressions. Its semantic interpretation
requires in addition definition of (3) a model, (4) the possible denotations of syntactic
expressions in the model, and (5) a semantic rule for each syntactic rule.

These five components of model theory are illustrated by the following definition,
which in addition to the usual propositional calculus also handles example 19.3.1 in a
simple manner.7

19.3.2 DEFINITION OF A MINIMAL LOGIC

1. Lexicon
Set of one-place predicates: {sleep, sing}
Set of names: {Julia, Susanne}

2. Model
A model M is a tuple (A, F), where A is a non-empty set of entities and F a
denotation function (see 3).

3. Possible Denotations
(a) If P1 is a one-place predicate, then a possible denotation of P1 relative to a

model M is a subset of A. Formally, F(P1)M ⊆ A.

7 For simplicity, we do not use here a recursive definition of syntactic categories with sys-
tematically associated semantic types à la Montague (CoL, pp. 344–349).
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(b) If α is a name, then the possible denotations of α relative to a model M are
elements of A. Formally, F(α)M ∈ A.

(c) If φ is a sentence, then the possible denotations of φ relative to a model M
are the numbers 0 and 1, interpreted as the truth values ‘true’ and ‘false.’
Formally, F(φ)M ∈ {0,1}.

Relative to a model M a sentence φ is a true sentence if and only if the denotation
φ in M is the value 1.

4. Syntax
(a) If P1 is a one-place predicate and α is a name, then P1(α) is a sentence.
(b) If φ is a sentence, then ¬φ is a sentence.
(c) If φ is a sentence and ψ is a sentence, then φ & ψ is a sentence.
(d) If φ is a sentence and ψ is a sentence, then φ ∨ ψ is a sentence.
(e) If φ is a sentence and ψ is a sentence, the φ → ψ is a sentence.
(f) If φ is a sentence and ψ is a sentence, then φ = ψ is a sentence.

5. Semantics
(a) ‘P1(α)’ is a true sentence relative to a model M if and only if the denotation

of α in M is an element of the denotation of P1 in M.
(b) ‘¬φ’ is a true sentence relative to a model M if and only if the denotation

of φ is 0 relative to M.
(c) ‘φ & ψ’ is a true sentence relative to a model M if and only if the denota-

tions of φ and of ψ are 1 relative to M.
(d) ‘φ ∨ψ’ is a true sentence relative to a model M if and only if the denotation

of φ or ψ is 1 relative to M.
(e) ‘φ → ψ’ is a true sentence relative to a model M if and only if the denotation

of φ is 0 relative to M or the denotation of ψ is 1 relative to M.
(f) ‘φ = ψ’ is a true sentence relative to a model M if and only if the denotation

of φ relative to M equals the denotation of ψ relative to M.

The rules of syntax (4) define the complex expressions of the logical language; those
of the semantics (5) specify the circumstances under which these complex expressions
are true.

The simple logic system establishes a semantic relation between the formal lan-
guage and the world by defining the two levels as well as the relation between them
in terms of a metalanguage. The theory behind this method was presented by the
Polish-American logician Alfred TARSKI (1902–1983) in a form still valid today.

In the formal definition of an interpreted language, Tarski (1935) distinguishes be-
tween the object language and the metalanguage. The object language is the language
to be semantically interpreted (e.g., quoted expressions like ‘φ & ψ’ in 19.3.2, 5),
while the definitions of the semantic interpretation are formulated in the metalan-
guage. It is assumed that the metalanguage is known by author and reader at least as
well or even better than their mother tongue because there should be no room at all
for differing interpretations.
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The metalanguage definitions serve to formally interpret the object language. In
logical semantics the task of the interpretation is to specify under what circumstances
the expressions of the object language are true. Tarski’s basic metalanguage schema
for characterizing truth is the so-called T-condition. According to Tarski, the T stands
mnemonically for truth, but it could also be taken for translation or Tarski.

19.3.3 SCHEMA OF TARSKI’S T-CONDITION

T: x is a true sentence if and only if p.

The T-condition as a whole is a sentence of the metalanguage, which quotes the sen-
tence x of the object language and translates it as p. Tarski illustrates this method with
the following example:

19.3.4 INSTANTIATION OF TARSKI’S T-CONDITION

‘Es schneit’ is a true sentence if and only if it is snowing.

This example is deceptively simple, and has resulted in misunderstandings by many
non-experts.8 What the provocative simplicity of 19.3.3 and 19.3.4 does not express
when viewed in isolation is the exact nature of the two level structure (19.1.1), which
underlies all forms of semantic interpretation and therefore is also exemplified by the
particular method proposed by Tarski.

A closer study of Tarski’s text shows that the purpose of the T-condition is not a re-
dundant repetition of the object language expression in the metalanguage translation.
Rather, the T-condition has a twofold function. One is to construct a systematic con-
nection between the object language and the world by means of the metalanguage:
thus, the metalanguage serves as the means for realizing the assignment (19.1.1) in
logical semantics. The other is to characterize truth: the truth value of x in the object
language is to be determined via the interpretation of p in the metalanguage.

Both functions require that the metalanguage can refer directly (i) to the object lan-
guage and (ii) to the correlated state of affairs in the world (model). The connection
between the two levels of the object language and the world established by the meta-
language may be shown schematically as follows:

19.3.5 RELATION BETWEEN OBJECT AND METALANGUAGE

8 Tarski (1944) complains about these misunderstandings and devotes the second half of his
paper to a detailed critique of his critics.
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The direct relation of the metalanguage to the world requires the possibility of ver-
ification, i.e., the ability to actually determine whether p holds or not. For example,
in order to determine whether Es schneit is true or not, it must be possible to deter-
mine whether or not it is actually snowing. Without the possibility of verifying p, the
T-condition is (i) vacuous for the purpose of characterizing truth and (ii) dysfunctional
for the purpose of assigning semantic objects.

That Tarski calls the p in the T-condition the ‘translation’ of the x is misleading
because translation in the normal sense of the word is not concerned with truth at
all. Instead a translation is adequate, if the speaker meaning2 of the source and the
target language expressions happen to be equivalent. For example, translating Die
Katze ist auf der Matte as The cat is on the mat is adequate simply because the
German source and the English target expression mean the same thing. There is ob-
viously neither the need nor even the possibility of verification outside a theory of
truth.

Tarski, however, took it to be just as obvious that within a theory of truth the pos-
sibility of verification must hold. In contradistinction to 19.3.4, Tarski’s scientific ex-
amples of semantically interpreted languages do not use some natural language as
the metalanguage – because it does not ensure verification with sufficient certainty.
Rather, Tarski insisted on carefully constructing special metalanguages for certain
well-defined scientific domains for which the possibility of verification is guaran-
teed.

According to Tarski, the construction of the metalanguage requires that (i) all its
basic expressions are explicitly listed and that (ii) each expression of the metalanguage
“has a clear meaning” (op.cit., p. 172). This conscientious formal approach to the
metalanguage is exemplified in Tarski’s (1935) analysis of the calculus of classes,
which illustrates his method in formal detail. The only expressions used by Tarski in
this example are notions like not, and, is contained in, is an element of, individual,
class, and relation. The meaning of these expressions is immediately obvious insofar
as they refer to the most basic mathematical objects and set-theoretic operations. In
other words, Tarski limits the construction of his metalanguage to the elementary
notions of a fully developed (meta-)theory, e.g., a certain area in the foundations of
mathematics.

The same holds for the semantic rules in our example 19.3.2, for which reason
it constitutes a well-defined Tarskian semantics. The semantic definition of the first
rule9 as a T-condition like 19.3.5 may shown as follows:

9 Compared to 19.3.5, 19.3.6 is more precise because the interpretation is explicitly restricted
to a specific state of affairs, specified formally by the model M. In a world where it is
snowing only at certain times and certain places, on the other hand, 19.3.5 will work only if
the interpretation of the sentence is restricted – at least implicitly – to an intended location
and moment of time.
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19.3.6 T-CONDITION IN A LOGICAL DEFINITION

The possibility of verifying the T-condition 19.3.6 is guaranteed by no more and no
less than the fact that for any given model M anyone who speaks English and has
some elementary notion of set theory can see (in the mathematical sense of “unmittel-
bare Anschauung” or “immediate obviousness”) whether the relation specified in the
translation part of T holds in M or not.

In the history of mathematics, the appeal to immediate obviousness has always
served as the ultimate justification, as formulated by Blaise PASCAL (1623–1662):

En l’un les principes sont palpables mais éloignés de l’usage commun de sorte qu’on
a peine à tourner la tête de ce côté-la, manque d’habitude: mais pour peu qu’on l’y
tourne, on voit les principes à peine; et il faudrait avoir tout à fait l’esprit faux pour
mal raisonner sur des principes si gros qu’il est presque impossible qu’ils échappent.

[In [the mathematical mind] the principles are obvious, but remote from ordinary use,
such that one has difficulty to turn to them for lack of habit: but as soon as one turns
to them, one can see the principles in full; and it would take a thoroughly unsound
mind to reason falsely on the basis of principles which are so obvious that they can
hardly be missed.]

Pascal, Pensées (1951:340)

In summary, Tarski’s theory of truth and logical semantics is clearly limited to the do-
mains of mathematics, logic, and natural science insofar as only there are sufficiently
certain methods of verification available.

19.4 Metalanguage-Based or Procedural Semantics?

In contrast to the semantic definitions in 19.3.2, which use only immediately obvi-
ous logical notions and are therefore legitimate in the sense of Tarski’s method, the
following instantiation of the T-conditions violates the precondition of verifiability:

19.4.1 EXAMPLE OF A VACUOUS T-CONDITION

‘A is red’ is a true sentence if and only if A is red.

The example is formally correct but vacuous because it does not relate the mean-
ing of red in the object language to some verifiable concept of the metalanguage.
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Instead the expression of the object language is merely repeated in the metalan-
guage.10

Within the boundaries of its set-theoretic foundations, model-theoretic semantics
has no way of providing a truth-conditional analysis for a content word like red such
that its meaning would be characterized adequately in contradistinction to, for exam-
ple, blue. There exists, however, the possibility of extending the metatheory by calling
in additional sciences such as physics.

From such an additional science one may select a small set of new basic notions to
serve in the extended metalanguage. The result functions properly if the meaning of
the additional expressions is verifiable within the extended metatheory.

In this way we might improve the T-condition 19.4.1 as follows:

19.4.2 IMPROVED T-CONDITION FOR red

‘A is red’ is a true sentence if and only if A refracts light in the electromagnetic
frequency interval between 430–480 THz.

Here the metalanguage translation relates the object language expression red to more
elementary notions (i.e., the numbers 430 and 480 within an empirically established
frequency scale and the notion of refracting light, which is well understood in the
domain of physics) and thus succeeds in characterizing the expression in a nonvacuous
way which is moreover objectively verifiable.

Example 19.4.1 shows that the object language may contain expressions for which
there are only vacuous translations in the metalanguage. This does not mean that a
sentence like ‘x is red’ is not meaningful or has no truth value. It only means that the
metalanguage is not rich enough to provide a verification of the sentence. This raises
the question of how to handle the semantics of the metalanguage, especially regarding
the parts which go beyond the elementary notions of its metatheory.

Tarski’s answer is the construction of an infinite hierarchy of metalanguages:

19.4.3 HIERARCHY OF METALANGUAGES

10 Tarski’s own example 19.3.4 is only slightly less vacuous. This is because the metalanguage
translation in Tarski’s example is in a natural language different from the object language.
The metalanguage translation into another natural language is misleading, however, be-
cause it omits the aspect of verification, which is central to a theory of truth. The frequent
misunderstandings which Tarski (1944) so eloquently bewails may well have been caused
in large part by the ‘intuitive’ choice of his examples.
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Here, some vacuous T-conditions of the metalanguage, e.g., 19.4.1, are repaired by
nonvacuous T-conditions, e.g., 19.4.2, in the metametalanguage. Some holes in the
metametalanguage are filled in turn by means of additional basic concepts in the
metametametalanguage, and so on. That an infinite hierarchy of metalanguages makes
total access to truth ultimately impossible, at least for mankind, is not regarded as a
flaw of Tarski’s construction – on the contrary, it constitutes a major part of its philo-
sophical charm.

For the semantics of programming and natural languages, however, a hierarchy of
metalanguages is not a suitable foundation.11 Consider for example the rules of basic
addition, multiplication, etc. The problem is not to provide an adequate metalanguage
definition for these rules, similar to 19.3.2. Rather, the road from such a metalanguage
definition to a working calculator is quite long and in the end the calculator will func-
tion mechanically – without any reference to the metalanguage definitions and without
any need to understand the metalanguage.12

This simple fact has been called autonomy from the metalanguage.13 It is character-
istic of all programming languages. Autonomy from the metalanguage does not mean
that computers would be limited to uninterpreted, purely syntactic deduction systems,
but rather that Tarski’s method is not the only one possible. Instead of the Tarskian
method of assigning semantic representations to an object language by means of a
metalanguage, computers use an operational method in which the notions of the pro-
gramming language are executed automatically as electronically realized operations.

Because the semantics of programming languages is procedural (i.e., metalanguage-
independent), while the semantics of logical calculi is Tarskian (i.e., metalanguage-
dependent), the reconstruction of logical calculi as computer programs is at best dif-
ficult.14 If it works at all, it usually requires profound compromises on the side of the

11 The discussion of Tarski’s semantics in CoL, pp. 289–295, 305–310, and 319–323, was
aimed at bringing out as many similarities between the semantics of logical, programming,
and natural languages as possible. For example, all three kinds of semantic interpretation
were analyzed from the viewpoint of truth: whereas logical semantics checks whether a
formula is true relative to a model or not, the procedural semantics of a programming
language constructs machine states which ‘make the formula true’, – and similarly in the
case of natural semantics. Accordingly, the reconstruction of logical calculi on the computer
was euphemistically called ‘operationalizing the metalanguage’.

Further reflection led to the conclusion, however, that emphasizing the similarities was
not really justified: because of the differing goals and underlying intuitions of the three
kinds of semantics a general transfer from one system to another is ultimately impossible.
For this reason the current analysis first presents what all semantically interpreted systems
have in common, namely the basic two level structure, and then concentrates on bringing
out the formal and conceptual differences between the three systems.

12 See in this connection also 3.4.5.
13 CoL, pp. 307f.
14 With the notable exception of propositional calculus. See also transfer in 19.2.3.
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calculus – as illustrated, for example, by the computational realization of predicate
calculus in the form of Prolog.

Accordingly, there are many logical calculi in existence which have not been and
never will be realized as computer programs. The reason is that their metalanguage
translations contain parts which may be considered immediately obvious by their de-
signers (e.g., quantification over infinite sets of possible worlds in modal logic), but
which are nevertheless unsuitable to be realized as empirically meaningful mechanical
procedures.

Thus, the preconditions for modeling a logical calculus as a computer program are
no different from nonlogical theories such as physics or chemistry: the basic notions
and operations of the theory must be sufficiently clear and simple to be realized as
electronic procedures which are empirically meaningful and can be computed in a
matter of minutes or days rather than centuries (8.2.2).

19.5 Tarski’s Problem for Natural Language Semantics

Because the practical use of programming languages requires an automatic interpre-
tation in the form of corresponding electronic procedures they cannot be based on a
metalanguage-dependent Tarski semantics. But what about using a Tarski semantics
for the interpretation of natural languages?

Tarski himself leaves no doubt that a complete analysis of natural language is in
principle impossible within logical semantics.

The attempt to set up a structural definition of the term ‘true sentence’ – applicable
to colloquial language – is confronted with insuperable difficulties.

Tarski (1935), p. 164

Tarski proves this conclusion on the basis of a classical paradox, called the Epi-
menides, Eubulides, or liar paradox.

The paradox is based on self-reference. Its original ‘weak’ version has the following
form: if a Cretan says All Cretans (always) lie there are two possibilities. Either the
Cretan speaks truly, in which case it is false that all Cretans lie – since he is a Cretan
himself. Or the Cretan lies, which means that there exists at least one Cretan who does
not lie. In both cases the sentence in question is false.15

Tarski uses the paradox in the ‘strong’ version designed by Leśniewski and con-
structs from it the following proof that a complete analysis of natural language within
logical semantics is necessarily impossible:

For the sake of greater perspicuity we shall use the symbol ‘c’ as a typological abbre-
viation of the expression ‘the sentence printed on page 391, line 2 from the bottom.’
Consider now the following sentence:

c is not a true sentence

Having regard to the meaning of the symbol ‘c’, we can establish empirically:

15 For a detailed analysis of the weak version(s) see Thiel (1995), pp. 325–327.
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(a) ‘c is not a true sentence’ is identical with c.
For the quotation-mark name of the sentence c we set up an explanation of type (2)
[i.e., the T-condition 19.3.3]:
(b) ‘c is not a true sentence’ is a true sentence if and only if c is not a true sentence.
The premise (a) and (b) together at once give a contradiction:
c is a true sentence if and only if c is not a true sentence.

Tarski (1935)

In this construction, self-reference is based on two preconditions. First, a sentence
located in a certain line on a certain page, i.e., line 2 from the bottom on page 391 in
the current Chap. 19, is abbreviated as ‘c’.16

Second, the letter ‘c’ with which the sentence in line 2 from the bottom on page 391
is abbreviated also occurs in the unabridged version of the sentence in question. This
permits one to substitute the c in the sentence by the expression which the ‘other’ c
abbreviates. The substitution may be described schematically as follows:

19.5.1 LEŚNIEWSKI’S RECONSTRUCTION OF THE EPIMENIDES PARADOX

If sentence c in line X is true, then what sentence c says, namely that ‘c is not a true
sentence’, holds. Thus, ‘c is not a true sentence’ (as the original statement) and ‘c is a
true sentence’ (as obtained via substitution and its interpretation) both hold.

To prove that a logical semantics for natural language is impossible, Tarski com-
bines Leśniewski’s version of the Epimenides paradox with his T-condition. In this
way he turns an isolated paradox into a contradiction of logical semantics.

19.5.2 INCONSISTENT T-CONDITION USING EPIMENIDES PARADOX

There are three options to avoid this contradiction in logical semantics.
The first consists in forbidding the abbreviation and the substitution based on it.

This possibility is rejected by Tarski because “no rational ground can be given why
substitution should be forbidden in general.”

16 The page and line numbers have been adjusted here from Tarski’s original text to fit those
of this chapter. This adjustment is crucial in order for self-reference to work.
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The second possibility consists in distinguishing between the predicates ‘trueo’ of
the object language and ‘truem’ of the metalanguage.17 Accordingly, the formulation

c is truem if and only if c is not trueo

is not contradictory because truem �= trueo. Tarski does not consider this possibility,
presumably because the use of more than one truth predicate runs counter to the most
fundamental goal of logical semantics, namely a formal characterization of the truth.

The third possibility, chosen by Tarski, is to forbid the use of truth predicates in
the object language. For the original goals of logical semantics the third option poses
no problem. Characterizing scientific theories like physics as true relations between
logical propositions and states of affairs does not require a truth predicate in the object
language. The same holds for formal theories like mathematics.

Furthermore, for many mathematical logicians the development of semantically in-
terpreted logical calculi was motivated by the desire to avoid what they called the
vagueness and contradictions of natural language. For example, Frege (1892) ex-
presses this sentiment as follows:

Der Grund, weshalb die Wortsprachen zu diesem Zweck [d.h. Schlüsse nur nach rein
logischen Gesetzen zu ziehen] wenig geeignet sind, liegt nicht nur an der vorkom-
menden Vieldeutigkeit der Ausdrücke, sondern vor allem in dem Mangel fester For-
men für das Schließen. Wörter wie >also<, >folglich<, >weil< deuten zwar darauf
hin, daßgeschlossen wird, sagen aber nichts über das Gesetz, nach dem geschlossen
wird, und können ohne Sprachfehler auch gebraucht werden, wo gar kein logisch
gerechtfertigter Schlußvorliegt.

[The reason why the ‘word-languages’ are little suited for this purpose [i.e., draw
inferences based on purely logical laws] is not only the existing ambiguity of the
expressions, but above all the lack of clear forms of inference. Even though words
like ‘therefore,’ ‘consequently,’ ‘because’ indicate inferencing, they do not specify
the rule on which the inference is based, and they may be used without violating the
well-formedness of the language even if there is no logically justified inference.]

This long-standing, widely held view provides additional support to refraining from
any attempt to apply a Tarskian semantics to natural language.

If logical semantics is nevertheless applied to natural language, however, the third
option does pose a serious problem. This is because the natural languages must18 con-
tain the words true and false. Therefore a logical semantic interpretation of a natural
(object) language in its entirety will unavoidably result in a contradiction.

Tarski’s student Richard Montague (1930–1970), however, was undaunted by
Tarski’s proof and insisted on applying logical semantics to natural language:

17 The second option will be explored in Chap. 21, especially Sect. 21.2, for the semantics of
natural language.

18 This follows from the role of natural languages as the pretheoretical metalanguage of the
logical languages. Without the words true and false in the natural languages a logical se-
mantics couldn’t be defined in the first place.
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I reject the contention that an important theoretical difference exists between formal
and natural languages. . . . Like Donald Davidson I regard the construction of a theory
of truth – or rather the more general notion of truth under an arbitrary interpretation
– as the basic goal of serious syntax and semantics.

Montague (1970), “English as a formal language”19

We must assume that Montague knew the Epimenides paradox and Tarski’s related
work. But in his papers on the semantics of natural languages Montague does not
mention this topic at all. Only Davidson, whom Montague appeals to in the above
quotation, is explicit:

Tarski’s . . . point is that we should have to reform natural language out of all recog-
nition before we could apply formal semantic methods. If this is true, it is fatal to my
project.

Davidson (1967)

A logical paradox is fatal because it destroys a semantic system. Depending on which
part of the contradiction an induction starts with, one can always prove both a theorem
and its negation. This is not acceptable for a theory of truth.20

Without paying much attention to Tarski’s argument, Montague, Davidson, and
many others insist on using logical semantics for the analysis of natural language.
This is motivated by the following parochial prejudices and misunderstandings:

For one, the advocates of logical semantics for natural language have long been con-
vinced that their method is the best-founded form of semantic interpretation. Because
they see no convincing alternatives to their metalanguage-dependent method – despite
calculators and computers – they apply logical semantics in order to arrive at least at
a partial analysis of natural language meaning.

A second reason is the fact that the development of logic began with the description
of selected natural language examples. After a long independent evolution of logi-
cal systems it is intriguing to apply them once more to natural languages,21 in order
to show which aspects of natural language semantics can be easily modeled within
logic.

19 Montague (1974), p. 188.
20 As a compromise, Davidson suggested limiting the logical semantic analysis of natural

language to suitable consistent fragments of natural language. This means, however, that
the project of a complete logical semantic analysis of natural languages is doomed to fail.

Attempts to avoid the Epimenides paradox in logical semantics are Kripke (1975), Gupta
(1982), and Herzberger (1982). These systems each define an artificial object language
(first-order predicate calculus) with truth predicates. That this object language is neverthe-
less consistent is based on defining the truth predicates as recursive valuation schemata.

Recursive valuation schemata are based on a large number of valuations (transfinitely
many in the case of Kripke 1975). As a purely technical trick, they miss the point of the
Epimenides paradox, which is essentially a problem of reference: a symbol may refer on
the basis of its meaning and at the same time serve as a referent on the basis of its form.

21 As an L→N reconstruction (19.2.3).
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A third reason is that natural languages are often viewed as defective because they
can be misunderstood and – in contrast to the logical calculi – implicitly contradictory.
Therefore, the logical analysis of natural language has long been motivated by the goal
of systematically exposing erroneous conclusions in rhetorical arguments in order to
arrive at truth. What is usually overlooked, however, is that the interpretation of natural
languages works quite differently (19.2.2) from the interpretation of metalanguage-
dependent logical languages.

Exercises

Section 19.1
1. What areas of science deal with semantic interpretation?
2. Explain the basic structure common to all systems of semantic interpretation.
3. Name two practical reasons for building semantic structures indirectly via the

interpretation of syntactically analyzed surfaces.
4. Explain the inverse procedures of representation and reconstruction.
5. How many kinds of semantic interpretation can be assigned to a given language?
6. Explain in what sense axiomatic systems of deduction are not true systems of

semantic interpretation.

Section 19.2
1. Describe three different kinds of formal semantics.
2. What is the function of syntactically analyzed surfaces in the programming lan-

guages?
3. What principle is the semantics of the programming languages based on and how

does it differ from that of the logical languages?
4. What is the basic difference between the semantics of the natural languages, on

the one hand, and the semantics of the logical and the programming languages,
on the other?

5. Why is a syntactical analysis presupposed by a formal semantic analysis?
6. Discuss six possible relations between different kinds of semantics.
7. What kinds of difficulties arise in the replication of logical proof theory in the

form of computer programs for automatic theorem proving?
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Section 19.3
1. Name the components of a model theoretically interpreted logic and explain their

functions.
2. What are the goals of logical semantics?
3. What is Tarski’s T-condition and what is its purpose for semantic interpretation?
4. Why is verification a central part of Tarski’s theory of truth?
5. What is the role of translation in Tarski’s T-condition?
6. Why does Tarski construct the metalanguage in his example of the calculus of

classes? What notions does he use in this construction?
7. What does immediate obviousness do for verification in mathematical logic?

Section 19.4
1. Explain a vacuous T-condition with an example.
2. What is the potential role of non-mathematical sciences in Tarski’s theory of

truth?
3. For what purpose does Tarski construct an infinite hierarchy of metalanguages?
4. Why is the method of metalanguages unsuitable for the semantic interpretation

of programming languages?
5. What is the precondition for realizing a logical calculus as a computer program?
6. In what sense does Tarski’s requirement that only immediately obvious notions

be used in the metalanguage have a counterpart in the procedural semantics of
the programming languages?

Section 19.5
1. How does Tarski view the application of logical semantics to the analysis of

natural languages?
2. Explain the Epimenides paradox.
3. Explain the three options for avoiding the inconsistency of logical semantics

caused by the Epimenides paradox.
4. What is the difference between a false logical proposition like ‘A & ¬A’ and a

logical inconsistency caused by a paradox?
5. What difference does Montague see between the artificial and the natural lan-

guages, and what is his goal in the analysis of natural languages?
6. Give three reasons for applying logical semantics to natural languages. Are they

valid?



20. Truth, Meaning, and Ontology

This chapter further explores the relation between a theory of truth and a theory of
natural language meaning. The classic problems of intensional contexts, propositional
attitudes, and vagueness are related to the different possible ontologies underlying
theories of semantics.

Section 20.1 describes natural language phenomena which have motivated expan-
sions of logical semantics, in particular Frege’s distinction between sense and refer-
ence. Section 20.2 explains Carnap’s reconstruction of Frege’s sense as formal func-
tions called intensions. Section 20.3 shows why the phenomenon of propositional
attitudes is incompatible with the ontological assumptions of logical truth conditions.
Section 20.4 explains why there are in principle four basic kinds of ontology for the-
ories of semantic interpretation. Section 20.5 describes the basic concepts of many-
valued logics and shows how the choice of a particular ontology can greatly influence
the outcome of a formal analysis, using the phenomenon of vagueness as an example.

20.1 Analysis of Meaning in Logical Semantics

The application of logical semantics to natural language is intended to characterize
meaning. It is not obvious, however, how a theory of truth is supposed to double as a
theory of meaning. To indirectly motivate the logical semantics of natural language as
a theory of meaning, the following principle is used:

20.1.1 THE MEANING PRINCIPLE OF LOGICAL SEMANTICS

If a speaker-hearer knows the meaning of a sentence, he can say for any state
of affairs whether the sentence is true or false with respect to it.

This principle equates the intuitive knowledge of a natural sentence meaning with
the knowledge of its truth conditions. In logical semantics, the meanings of natural
language sentences are characterized by explicitly defining their truth conditions.

However, if the meanings of the natural (meta-)language are used to define the truth
conditions of logical semantics, and the truth conditions of logical semantics are used
to define the meanings of the natural (object) language, then there arises the danger of
a vicious circle. Such a circle can only be avoided if the meaning analysis within logi-
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cal semantics is limited to reducing complex natural language meanings to elementary
logical notions.

For this purpose, the logical notions must be restricted explicitly to a small, well-
defined arsenal of elementary meanings which are presupposed to be immediately
obvious – in accordance with Tarski’s requirement for the metalanguage (Sect. 19.3).
The natural language fragment (object language) is analyzed semantically by trans-
lating it into the logical language with the goal of bringing out the truth-conditional
aspects of the natural language as much as possible.1

The logical analysis of natural language has repeatedly brought to light properties
which seemed puzzling or paradoxical from a logical point of view. This has evoked
ambivalent reactions in the logicians involved.

On the one hand, they felt confirmed in their view that natural languages are im-
precise, misleading, and contradictory.2 On the other hand, some of these phenomena
were taken as a challenge to expand logical systems so that they could handle selected
natural language puzzles and explain them in terms of their extended logical structure
(N→L reconstruction, Sect. 19.2).

The discrepancies between the intuitive assumptions of logical semantics and the
meaning structures of natural language, as well as attempts at overcoming them at
least in part, are illustrated by a classical example from the history of logic. The exam-
ple is based on two rules of inference developed from Aristotelian logic by medieval
scholasticists, namely existential generalization and substitutivity of identicals.

According to the rule of existential generalization it follows from the truth of a
proposition F(a, b) that a exists and that b exists. For example, the sentence Julia
kissed Richard is analyzed semantically as a kiss relation between the entities Julia
and Richard. If Julia kissed Richard is true, then it must be true that Julia exists and
Richard exists.

The rule of substitutivity of identicals says that, given the premises F(a, b) and
b = c, F(a, b) implies F(a, c). For example, if Richard = Prince of Burgundy, then the
truth of the sentence Julia kissed Richard implies the truth of the sentence Julia kissed
the Prince of Burgundy. This substitutivity of Richard and Prince of Burgundy salva

1 Thereby it was initially considered sufficient to assign logical translations informally to
suitably selected examples, based on intuition. For example, Quine (1960) presented the
formula ∧x[raven(x) → black(x)] as the semantic representation of the sentence All ravens
are black, using his native speaker understanding of English and his knowledge of logic
(informal translation).

A rigorously formal method of analyzing the truth-conditional aspect of natural lan-
guages was pioneered by Richard Montague. In Montague grammar, syntactically analyzed
expressions of natural language are mapped systematically into equivalent logical formulas
by means of a well-defined algorithm (formal translation).

2 It would be a worthwhile topic in history of science to collect and classify statements to
this effect in the writings of Frege, Russell, Tarski, Quine, and many others.
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veritate, i.e., preserving the truth value, is based on the fact that these two different
expressions denote the same object.

But what about the following pairs of sentences?

20.1.2 VALID AND INVALID INSTANCES OF EXISTENTIAL GENERALIZATION

(1) Julia finds a unicorn. > A unicorn exists.
(2) Julia seeks a unicorn. �> A unicorn exists.

The symbols > and �> represent implies and doesn’t imply, respectively. The premises
in these two examples have exactly the same syntactic structure, namely F(a, b). The
only difference consists in the choice of the verb. Yet in (1) the truth of the premise
implies the truth of the consequent, in accordance with the rule of existential general-
ization, while in (2) this implication does not hold.

Example (2) raises the question of how a relation can be established between a
subject and an object if the object does not exist. How can Julia seeks a unicorn be
grammatically well-formed, meaningful, and even true under realistic circumstances?
Part of the solution consisted in specifying certain environments in natural sentences
in which the rule of existential generalization does not hold, e.g., in the scope of a verb
like seek. These environments are called the uneven (Frege 1892), opaque (Quine
1960), or intensional (Montague 1974) contexts.

This solves only part of the puzzle, however. If the meaning of a unicorn is not an
object existing in reality, what else could it be? And how should the difference in
the meaning of different expressions for nonexisting objects, such as square circle,
unicorn, and Pegasus, be explained within the framework of logic?

The necessity of distinguishing between these meanings follows from the second
inference rule, the substitutivity of identicals. For example, if we were to use the
empty set as the referent of square circle, unicorn, and Pegasus in order to express
that no real objects correspond to these terms, then the truth of Julia seeks a unicorn
would imply the truth of Julia seeks Pegasus and Julia seeks the square circle because
of the substitutivity of identicals. Such a substitution would violate the intuitive fact
that the resulting sentences have clearly nonequivalent meanings – in contrast to the
earlier the Richard/Prince of Burgundy example.

The nonequivalence of Julia seeks a unicorn and Julia seeks a square circle leads to
the conclusion that in addition to the real objects in the world there also exist natural
language meanings which are independent of their referents. This was recognized in
Frege’s (1892) distinction between sense (Sinn) and reference (Bedeutung).

Frege concluded from examples like 20.1.2 that all expressions of language have
a meaning (sense), even square circle and Pegasus. Based on their meaning some
of these expressions, e.g., Julia, refer to real objects (referents), whereas others, e.g.,
a unicorn, happen to have no referent.3 In this way a sentence like Julia seeks a

3 Frege proposed using the empty set as the referent for nonreferring expressions – to make
referring a total function. This was declared plainly artificial by Russell (1905).
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unicorn can be properly explained: the proposition establishes a relation between the
real individual denoted by Julia and the meaning (sense) of a unicorn.

Frege’s move to distinguish the meaning of language expressions (sense) and the ob-
ject referred to (referents) is correct from the viewpoint of natural language analysis,
but dangerous for the main concern of analytic philosophy, i.e., the characterization of
truth. Whereas (i) the signs of language (surfaces) and (ii) the objects in the world are
real, concrete, and objective, this does not hold in the same way for the entities called
meaning (sense). As long as it is not completely clear in what form these meanings
exist they pose an ontological problem.

From the ontological problem there follows a methodological one: how can a log-
ical theory of truth arrive at reliable results if it operates with concepts (senses) the
nature of which has not been clearly established? Doesn’t the everyday use of lan-
guage meanings show again and again that utterances may be understood in many
different ways? This ‘arbitrariness’ of different speaker-hearer meanings threatens to
compromise the main concern of philosophical logic.

Frege’s way out was to attribute a similar form of existence to the meanings of natu-
ral language as to the numbers and their laws in mathematical realism. Mathematical
realism proceeds on the assumption that the laws of mathematics exist even if no one
knows about them; mathematicians discover laws which are eternally valid.4 Frege
supposed the meanings of natural language to exist in the same way, i.e., indepen-
dently of whether there are speakers-hearers who have discovered them and use them
more or less correctly.

20.2 Intension and Extension

Frege’s proposal for making language meaning ‘real’ was successful insofar as it
rekindled interest in solving puzzles of natural language. On the one hand, there were
attempts to handle the phenomena treated by Frege without postulating a sense (Rus-
sell 1905; Quine 1960). On the other hand, there were attempts to reconstruct the
notion of sense logically.

A highlight among the efforts of the second group is Carnap’s reconstruction of
Frege’s sense as formal intensions. Carnap (1947) proceeds on the assumption that the
meaning of sleep, for example, is the set of sleepers (as in 19.3.1). In addition, Carnap
uses the fact that the elements of this set may vary in time: two individuals awake, an-
other one falls asleep, etc. Also, the set of sleepers may vary from one place to another.

Using the set I of different places and the set J of different points in time, Carnap
constructs an index (i, j), with i ∈ I and j ∈ J. Then he defines the intension of a word
or expression as a function from I × J into 2A, i.e., from an ordered pair (i, j) to the

4 The counterposition to mathematical realism is constructivism, according to which a math-
ematical law begins to exist only at the point when it has been constructed from formal
building blocks and their inherent logic by mathematicians.
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power set over the set of entities A. Carnap calls the value of an intension at an index
(i, j) the extension. The set-theoretic kind of an extension depends on whether the
expression is a sentence, a proper name, or a predicate.

20.2.1 EXAMPLES OF CARNAP’S Intensions

intension
proposition: I × J → {0,1}

extension

intension
proper name: I × J → a ∈ A

extension

intension
1-pl. predicate: I × J → {a1, a2, . . . } ⊆ A

extension

The notion of intension refers to the function as a whole (7.4.1). Its domain is I×J and
its range is called the extension. The extensions of propositions are the truth values
defined as elements of {0, 1}, the extensions of proper names are objects defined as
elements of A, and the extensions of predicates are relations defined as subsets of A.

Carnap’s systematic variation of denotations relative to different indices required
an extended definition of the logical language (as compared to, e.g., 19.3.2). For this
purpose the model M is expanded into a so-called model structure MS. A model
structure consists of a set of models such that each index (i, j), i ∈ I and j ∈ J, is
associated with a model specifying the extension of all words of the logical language
at that index.

In order to determine the truth value of a sentence relative to a model structure and
an index, the model structure must be explicitly defined. Even for a very small model
structure this definition is extremely cumbersome and complex. Moreover, the formal
interpretation of a sentence relative to such a definition produces nothing that isn’t
already known to begin with: the truth value of the sentence is an exact reflection of
what the logician defined in the model structure at the index in question.

That model structures have no practical purpose is not regarded as a drawback by
model-theoretic semanticists, however. Their goal is not to define a complete model
of the world in order to determine the actual truth value of sentences, but rather to
design a logical semantics in which the truth value of arbitrary well-formed sentences
could in principle be determined formally if the model structure were defined.

From this viewpoint, Carnap’s formal intensions fulfill many desiderata of Frege’s
sense. Intensions characterize the meaning (sense) of an expression insofar as anyone
who knows the metalanguage definition of the model structure and the metalanguage
definition of the logical language can determine the extension of the expression at any
index. Furthermore, intensions serve as denotations in intensional contexts: the sen-
tence Julia seeks an apple, for example, may be analyzed as a seek relation between
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the extension of Julia and the intension of an apple, irrespective of whether or not
there are any apples at the index in question.

In addition, Carnap uses the index parameters I and J for the definition of modal and
temporal operators. Based on the temporal parameter J, the past operator H is defined
as follows: a proposition H(p) is true relative to a model structure MS and an index
(i, j) if there exists an index j’, j’ < j, and p is true relative to MS and (i, j’); and
accordingly for the future operator W (temporal logic).

Furthermore, by generalizing the location parameter I to range over ‘possible
worlds’, Carnap defines the modal operators for necessity � and possibility ♦. In
modal logic, two expressions are treated as necessarily equivalent, iff their extensions
are the same in all possible worlds; two expressions are possibly equivalent, iff there
is at least one possible world in which they have the same extension.

By defining intensions in this way, Carnap managed to avoid some of the problems
with substitution salva veritate. Assume, for example, that neither apples nor pears
exist at an index (i, j), such that the extensions of the notions apple and pear are the
same at (i, j), namely the empty set. Because the distribution of apples and pears is not
necessarily (i.e., not in all possible worlds) the same, they have different intensions.
Therefore the truth of Julia seeks an apple relative to (i, j) does not imply the truth of
Julia seeks a pear relative to (i, j) – provided that substitutivity of identicals applies
here at the level of intensions, as it should in the intensional context created by seek.

This kind of analysis has been extended to prevent expressions for fictitious ob-
jects such as unicorn or Pegasus from having the same meaning. While admitting that
neither unicorn nor Pegasus exists in the real world, it is argued that their nonexis-
tence is not necessary (i.e., does not hold in all possible worlds). Thus, given that
the expressions in question have meaning it may be assumed that there is at least one
‘non-actual’ possible world in which unicorns and Pegasus exist and have different
extensions, ensuring different intensions. It is this use of possible worlds which was
especially offensive to Quine (1960) on ontological grounds – and justly so.

Even though Carnap’s formal notion of intension5 exhibits properties with regard to
substitutivity of identicals and existential generalization which are similar to Frege’s
notion of sense, the two underlying theories are profoundly different, in terms of both
structure and content. This difference is characterized schematically using the binary
feature [±sense]:

5 Carnap’s formal notion of intensions plays a central role in Montague grammar, in which
analyzed language expressions are formally translated into a typed lambda calculus. This
intensional logic was designed by Montague to accommodate many traditional and new
puzzles of natural language in a clean formal fashion within logical semantics.

For example, in his “Proper treatment of quantification in ordinary English” (PTQ),
Montague presents and solves the new puzzle The temperature is 30 and rising: the ex-
tension of temperature equals the extension of a certain number, here 30; because a number
like 30 cannot increase, the predicate rise is applied not to the extension of temperature,
but to the intension!
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20.2.2 TWO APPROACHES TO MEANING

Frege’s approach is [+sense] because it uses a separate level for the meaning1 of
language. The surface and the meaning1 of expressions form a fixed unit which faces
the level of referents.6 In this respect, Frege’s approach and the [2+1] level structure
of the SLIM theory of language are similar.

Carnap’s approach is [−sense] because expressions refer directly to the ‘world.’
Apart from the definition of a few additional operators, the only difference between
Carnap’s intensional logic and the extensional system defined in 19.3.2 consists in the
fact that for Carnap the world is represented not just by a single model M but rather
by a model structure MS. The model structure represents different states of the world
as a multitude of models which have different indices. The indices provide the formal
domain for functions which Carnap calls intensions.

Though the relation between intensions and the intended referents is treated in Car-
nap’s system, it is by metalanguage definition only. The meaning (intension) refers to
a referent at a given index by using the index as the argument of the intension function,
thus rendering the associated extension as the value. Because Carnap defines exten-
sions solely in terms of set-theoretic structures, he does not characterize the meaning
of expressions like square (4.2.2), triangle, red, or blue any more than does Frege.

20.3 Propositional Attitudes

Despite the successful treatment of intensional contexts, temporal and modal opera-
tors, and other puzzles in logical semantics, there remain two basic problems which
in principle cannot be solved within the truth-conditional frameworks, namely

– the Epimenides paradox (Sect. 19.5) and
– propositional attitudes.

Propositional attitudes are expressed by sentences which describe the relation be-
tween a cognitive agent and a propositional content. For example, the sentence

Susanne believes that Cicero denounced Catiline.

6 According to Frege, expressions of language refer by means of their sense. Frege never
specified how the meaning (sense) of an expression should be defined exactly and how
reference to the intended object should be guided by the properties of the meaning. But the
main point is that his general approach provides a certain structural correlation between the
surface, the meaning, and the referent.
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expresses the propositional attitude of belief as a relation between Susanne and the
proposition Cicero denounced Catiline. What are the truth conditions of propositional
attitudes?

According to the intuitions of modal logic, a proper name denotes the same indi-
vidual in all possible worlds (rigid designator).7 For example, because Cicero and
Tullius are names for one and the same person, it holds necessarily (i.e, in all possible
worlds) that Cicero = Tullius. Therefore, it follows necessarily from the truth of Cicero
denounced Catiline that Tullius denounced Catiline.

However, if one of these sentences is embedded under a predicate of propositional
attitude, e.g., believe, the substitution salva veritate is not valid even for proper names.
Thus, according to intuition, Susanne believes that Cicero denounced Catiline does
not imply that Susanne believes that Tullius denounced Catiline. Even though the
referent of Cicero is necessarily identical with the referent of Tullius, it could be that
Susanne is not aware of this. Accordingly, a substitution salva veritate would require
in addition the truth of Susanne believes that Cicero is Tullius.

Because different human beings may have different ideas about reality, a treatment
of propositional attitudes in the manner of Carnap and Montague would have to model
not only the realities of the natural sciences, but also the belief structures of all indi-
vidual speaker-hearers.8 Such an attempt at handling this particular natural language
phenomenon by yet another extension of model-theoretic semantics, however, would
violate the basic assumptions of a theory of truth.

As shown in connection with Tarski’s semantics in Sect. 19.3, a theory of truth
is concerned not only with a formal definition of implications, but equally with the
verification of the premises of those implications. Only if the second aspect is fulfilled
is it possible to establish a true relation between a language and the world.

In order to determine what an individual believes, however, one is dependent on
what the individual chooses to report, whereby it cannot be checked objectively
whether this is true or not. For this reason, individual ‘belief-worlds’ have justly been
regarded as a prime example of what lies outside any scientific approach to truth.9

The phenomenon of propositional attitudes raises once more the fundamental ques-
tion of logical semantics for natural language (Sect. 20.1), namely

7 Compare Kripke’s (1972) model-theoretic treatment of proper names with their SLIM-
theoretic treatment in terms of internal name markers (Sects. 6.1, 6.4, and 6.5).

8 In purely formal terms one could define a ‘belief-operator’ B as follows:

B(x,p)MS,i,j,g is 1 iff pMS,b,j,g is 1, whereby b is a belief-world of x at index i, j.

However, one should not be fooled by this seemingly exacting notation which imitates
Montague’s PTQ. This T-condition is just as vacuous as 19.4.1 as long as it is not clear how
the metalanguage definition should be verified relative to belief-worlds.

9 In logical semantics, an ontological problem similar to individual belief-worlds is created
by individual sensations, like a toothache, which do not exist in the same way as real objects
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‘Definition of truth (conditions) by means of meaning or
definition of meaning in terms of truth (conditions)?’

though in a different form relating to ontology:

20.3.1 THE BASIC ONTOLOGICAL PROBLEM OF MODEL THEORY

Is the speaker-hearer part of the model structure or
is the model structure part of the speaker-hearer?

If the goal of logical semantics is to characterize truth, then one may use only log-
ical meanings which are presupposed to be immediately obvious and eternal. In this
approach the speaker-hearer must be part of the model structure, just like all the other
objects. Thereby, the relation of truth between expressions and states of affairs exists
independently of whether it is discovered by this or that speaker-hearer or not.10

Yet if the goal is the analysis of language meaning, then the logical system, which
was developed originally for the characterization of truth based on logical meanings,
is used for a new purpose, namely the description of language meanings in the form
of truth conditions. This new purpose of bringing out the logical aspect of natural
language meanings brings about a profound change in the original ontological as-
sumptions.

In order for the meanings of language to be used in communication by the speaker-
hearer they must be part of cognition. The cognitive (re-)interpretation of the model
as part the speaker-hearer is incompatible with the goals and methods of traditional
theories of truth. Conversely, the ‘realistic’ interpretation of the model within a theory
of truth is incompatible with an analysis of natural language meanings which are used
in communication.11

in the world. The so-called double aspect theory attempts to make such sensations ‘real’ to
the outside observer by means of measuring brain waves. By associating the phenomenon
pain with both, (i) the individual sensation and (ii) the corresponding measurement, this
phenomenon is supposed to obtain an ontological foundation acceptable to logical seman-
tics. A transfer of this approach to the truth-conditional analysis of belief would require
infallible lie detectors.

10 The mainstream view in philosophical logic does not require that a representation of scien-
tific truth include the speaker-hearer as part of the model. The only reason why a speaker-
hearer is sometimes added to a model-theoretic logic is the treatment of special phenomena
characteristic of natural language, especially the interpretation of indexical pronouns like I
and you. Thereby the speaker-hearer is in principle part of the model structure – making it
impossible to provide an adequate truth-conditional treatment of propositional attitudes, for
the reasons given above. A detailed critique of the outmoded ‘received view’ in the theory
of science, as well as its alternatives, may be found in Suppe (ed.) (1977).

11 Early examples of the misguided attempt to reinterpret the model structure as something
cognitive inside the speaker-hearer are Hausser (1978, 1979a,b, 1983), and SCG.
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There are examples known in mathematics where a basic formal theory happens
to allow more than one interpretation, e.g., geometry. This does not mean, however,
that any formal theory may in general be used for any new interpretation desired.
A case in point is logical semantics, the formalism of which cannot be interpreted
simultaneously as a general description of truth and a general description of natural
language meaning – as shown by the phenomenon of propositional attitudes.

The alternative stated in 20.3.1 may characterized schematically in terms of the
binary feature [±constructive]:

20.3.2 TWO ONTOLOGICAL INTERPRETATIONS OF MODEL THEORY

The [−constructive] interpretation establishes the relation between the language sur-
faces and the level of referents outside the cognitive agent out there in the real world.
The agent is itself an object at the level of referents, who may observe this somehow
god-given relation between language and the objects of the world.

The [+constructive] interpretation, on the other hand, establishes the relation be-
tween the language surfaces and the level of referents solely inside the cognitive
agent. What the agent does not perceive in the world plays no role in his reference
procedures, though what he feels, wishes, plans, etc., does.

The most fundamental difference between the two ontologies consists in the fact
that they require different kinds of semantics:

– Any system based on a [−constructive] ontology must have a metalanguage-based
semantics. This is because scientific statements believed to be eternally true and
independent of any speaker-hearer cannot be meaningfully operationalized. The
only option remaining for establishing the external relation between the expression
and the state of affairs is in terms of metalanguage definitions.

– Any system based on a [+constructive] ontology must have a procedural seman-
tics. This is because such systems would be simply useless without a procedural
semantics. Neither a computer nor a cognitive agent could function practically on
the basis of a metalanguage-based semantics.
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For different phenomena of logical analysis, the distinction between a [−construc-
tive] and a [+constructive] ontology has different implications. In propositional cal-
culus, the difference between the two ontologies happens to make no difference.
In first-order predicate calculus, quantification over infinite sets (universal quanti-
fier) will differ within the two ontologies. In intensional logic, the treatment of
opaque contexts and modality is incommensurable with their alternative treatment
in a [+constructive] cognitive model. A treatment of propositional attitudes, fi-
nally, is incompatible with a [−constructive] ontology, but poses no problem in a
[+constructive] system.

20.4 Four Basic Ontologies

The features [±sense] (20.2.2) and [±constructive] (20.3.2) are independent of,
and can be combined with, each other. This results in four kinds of semantic
interpretations based on four basic ontologies, namely [−sense, −constructive],
[+sense, −constructive], [−sense, +constructive], and [+sense, +constructive]:

20.4.1 ONTOLOGIES OF SEMANTIC INTERPRETATION
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Each of these ontologies has been adopted at one time or another by different schools
of semantic interpretation.

The [−sense, −constructive] ontology (i) is presumed by the mainstream of ana-
lytic philosophy, from Russell via the early Wittgenstein, Carnap, Quine, Montague,
to Putnam. Anxious for a solid foundation for truth, it uses only referents which are
considered to be ontologically real. In nominalism, these are the concrete signs of
language and the states of affairs built up from concrete objects in the world. In math-
ematical realism, the ontology is extended to include abstract objects like sets and
numbers. Both have in common that the semantics is defined as a direct, external
relation between language and the world.

The [+sense, −constructive] ontology (ii) was used by Frege in his attempt to an-
alyze uneven (opaque, intensional) readings in natural language. For modeling the
mechanism of natural language communication, this kind of semantics is only half a
step in the right direction. As a theory of truth, any [−constructive], metalanguage-
based semantics is necessarily incompatible with representing cognitive states.12

The [−sense, +constructive] ontology (iii) underlies the semantics of programming
languages. The user puts commands (surfaces of a programming language) into the
computer which turns them directly into corresponding electronic procedures. When
a result has been computed it is communicated to the user by displaying language
expressions on the screen. In this traditional use, a computer is still a far cry from a
cognitive agent. However, there is already the important distinction between the task
environment in the ‘world’ and the computer-internal problem space, whereby the
semantic interpretation is located in the latter.

Because of their origin as conventional programs on conventional computers (1.1.3)
most systems of artificial intelligence are based (subconsciously, so to speak) on a
[−sense, +constructive] ontology. This holds, for example, for SHRDLU (Winograd
1972), HEARSAY (Reddy et al. 1973), and SAM (Schank and Abelson 1977). In
cognitive psychology this ontology has been used as well, for example in the mental
models of Johnson-Laird (1983).

Within artificial intelligence, Newell and Simon (1972), have argued explicitly
against an intermediate level of sense, for purely ontological reasons. They argue that
the distinction between language meanings (sense) and the computer internal referents
would result “in an unnecessary and unparsimonious multiplication of hypothetical
entities that has no evidential support” (op.cit, p. 66).

12 Frege defended himself explicitly against the misinterpreting of his system as representing
cognitive states, which would be what he called ‘psychologistic’. Recently, situation se-
mantics (Barwise and Perry 1983) and discourse semantics (Kamp and Reyle 1993) have
attempted to revive the [+sense, −constructive] kind of semantics. Their inherently anti-
cognitive point of view is clearly depicted in Barwise and Perry (1983), p. 226, in the form
of comics.



20.4 Four Basic Ontologies 409

A direct connection between language expressions and their referents, however,
prevents any autonomous classification of new objects in principle. Therefore,
a [−sense, +constructive] kind of semantics is limited to closed toy worlds created
in advance by the programmer.13 It is by no means accidental that these systems
have no components of artificial perception: because they lack the intermediate level
of concepts (sense) they could not utilize perception (e.g., artificial vision) to clas-
sify and to automatically integrate new objects of a known kind into their domain
(Sect. 4.3).

The [+sense, +constructive] ontology (iv), finally, underlies the SLIM theory of
language. SLIM bases its [+sense] property structurally on the matching of the lit-
eral meaning and the context of use, while its [+constructive] property is based on
the fact that this matching occurs inside the cognitive agent. In cognitive psychol-
ogy, this kind of semantics has been used by Anderson and Bower (1973, 1980).
They present a general psychological model of natural language understanding, which
may be interpreted as an internal matching between language concepts and a context
structure, and to that extent resembles the functioning of CURIOUS as described in
Chap. 4.

The theoretical relation between the four alternative kinds of semantics may be an-
alyzed by emphasizing either their ontological difference or their formal similarities.
In the latter case, one will present one’s semantics as a purely formal structure which
may be assigned different interpretations without affecting the formal essence. For
this, one may relate the different ontologies in terms of different degrees of special-
ization or generalization.

The difference between a [+sense] and a [−sense] ontology may be minimized by
interpreting the latter as a simplification of the former. Assume that (i) the world is
closed such that objects can neither appear nor disappear,14 (ii) the relation between
language expressions and their referents is fixed once and for all, and (iii) there is
no spontaneous use of language by the speaker-hearer. Then there is no reason for
postulating a level of senses, thus leading to a [−sense] system as a special case of a
[+sense] system.

Because of this simplification one might view the [−sense] system as more valid or
more essential than the [+sense] system. One should not forget, however, that there
are empirical phenomena which simply cannot be handled within a [−sense] ontology,
such as the reference to new objects of a known kind.

The difference between a [+constructive] and a [−constructive] ontology may also
be minimized in terms of a simplification. Assume that the cognitive agent has perfect
recognition, such that the distinction between the external objects (i.e., language ex-

13 Examples are the chessboard (Newell and Simon 1972; Reddy et al. 1973) and the blocks
world (Winograd 1972).

14 This is represented formally by the definition of the sets A, I, and J of a model struc-
ture MS.
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pressions and referents) and their internal cognitive representations may be neglected.
Then there is no reason to distinguish between the external reality and its internal
cognitive representation, thus leading to a [−constructive] ontology as a special case
of a [+constructive] ontology.

Because of this simplification, one might view the [−constructive] system as more
valid and more essential than the [+constructive] system. One should not forget, how-
ever, that there are empirical phenomena which simply cannot be handled within a
[−constructive] ontology, such as propositional attitudes.

The choice between the four different kinds of semantics depends on the intended
application. Therefore, when (i) expanding a given semantics to a new applica-
tion or when (ii) transferring partial analyses from one application to another, one
should be as well informed about the structural differences between the four basic
ontologies as about the potential formal equivalences based on simplifying abstrac-
tions.

20.5 Sorites Paradox and the Treatment of Vagueness

The importance of ontology for the empirical results of semantic analysis is illustrated
by the phenomenon of vagueness. In logical semantics, the treatment of vagueness
takes a classic paradox from antiquity as its starting point, namely the Sorites paradox
or paradox of the heap:

One grain of sand does not make a heap. Adding an additional grain still does
not make a heap. If n grains do not form a heap, then adding another single
grain will not make a heap either. However, if this process of adding grains is
continued long enough, a genuine heap will eventually result.

The Sorites paradox has been carried over to the logical semantics of natural language
by arguing as follows: consider the process of, for example, a slowly closing door.
Does it not raise the question about at what point the sentence The door is open is still
true and at what point it is false? Then one goes one step further by asking to what
degree the sentence is true in the various stages of the door closing.

Sensitive students of language, especially psychologists and linguistic philosophers,
have long been attuned to the fact that natural language concepts have vague bound-
aries and fuzzy edges and that, consequently, natural-language sentences will very
often be neither true, nor false, nor nonsensical, but rather true to a certain extent and
false to a certain extent, true in certain respects and false in other respects.

Lakoff (1972b), p. 183

Another situation which has been presented as an example of truth-conditional
vagueness is the classification of colors. If an object is classified as red in context a,
but as non-red in context b, does it not follow that the natural language concept red
must be vague? If the predicate x is red is applied to the transition from red to orange
in a color spectrum, the situation resembles the slowly closing door.
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If these assumptions are accepted and sentences are true or false only to certain
degrees, then the traditional two-valued (bivalent) logic must be changed to a many-
valued logic.15 Such systems evolved originally in connection with the question of
whether a proposition must always be either true or false.

Throughout the orthodox mainstream of the development of logic in the West, the
prevailing view was that every proposition is either true or else false – although
which of these is the case may well neither be necessary as regards the matter it-
self nor determinable as regards our knowledge of it. This thesis, now commonly
called the “Law of Excluded Middle,” was, however, already questioned in antiquity.
In Chap. 9 of his treatise On Interpretation (de interpretatione), Aristotle discussed
the truth status of alternatives regarding “future-contingent” matters, whose occur-
rence – like that of the sea battle tomorrow – is not yet determinable by us and may
indeed actually be undetermined.

Rescher (1969), p. 1

Nonbivalent systems exceed the founding assumptions of logic, as shown by the re-
markable term ‘future-contingent’. While standard logic takes the viewpoint of an
omniscient being and is concerned with the interpretation of absolute propositions,
future-contingent propositions are concerned with more mundane situations. For ex-
ample, the question of what truth value the sentence Tomorrow’s sea battle will be lost
by the Persians has today is obviously not asked by an all-knowing being. Further-
more, the content of this proposition is neither mathematical nor scientific in nature,
and therefore cannot be verified.

In modern times, nonbivalent logics began with the Scotsman Hugh MacColl
(1837–1909), the American Charles Sanders Peirce (1839–1914), and the Russian
Nikolai A. Vasil’ev (1880–1940). The nonbivalent logics may be divided into two ba-
sic groups, namely the three-valued logics, in which a proposition can be true (1),
false (0), or undetermined (#), and the many-valued logics, in which truth values are
identified with the real numbers between 0 and 1, e.g., 0.615.

The three-valued logics and the many-valued logics all suffer from the same basic
problem:

What truth value should be assigned to complex propositions based on com-
ponent propositions with nonbivalent truth values?

Thus, a three-valued system raises the question: What should be the value of, for
example, A∧B, if A has the value 1 and B has the value #? Similarly in a many-valued
system: if the component proposition A has the truth value 0.615 and B has the value
0.423, what value should be assigned to A ∧ B?

15 Besides vagueness, nonbivalent logics have been motivated by semantic presuppositions
(see for example Hausser (1973, 1976)).
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There is an discomfiting wealth of possible answers to these questions. Rescher
(1969) describes 51 different systems of nonbivalent logics proposed in the literature
up to that date. Of those, only a few will be briefly described here.

Łukasiewicz (1935) assigns the following truth values to logical conjunction: if both
A and B are 1, then A ∧ B is 1; if one of the conjuncts is 0, then A ∧ B is 0; but if one
of the conjuncts is 1 and the other is #, then A ∧ B is #. This assignment reflects the
following intuitions: if it turns out that one conjunct of A ∧ B is 0, then the other
conjunct need not even be looked at because the whole conjunction will be 0 any-
how. But if one conjunct is 1 and the other is #, then the whole is indeterminate and
assigned the value #. The same reasoning is used by Łukasiewicz regarding logical
disjunction: if one of the two disjuncts is 1, then A ∨ B is 1; if both disjuncts are 0,
then A ∨ B is 0; but if one disjunct is 0 and the other is #, then the conjunction A ∨ B
is #.

A different value assignment is proposed by Bochvar (1939), who proceeds on the
assumption that a complex proposition is always # if one of its components is #.
Thus, if A is 0 and B is #, then Bochvar does not assign 0 to A ∧ B (as in the system of
Łukasiewicz), but rather #. And similarly for A ∨ B. Bochvar justifies this assignment
by interpreting # as senseless rather than unknown.

A third method of assigning nonbivalent truth values is supervaluations by van
Fraassen (1966, 1968, 1969), whose concern is to maintain the classic tautologies
and contradictions in a three-valued system. According to van Fraassen, it should not
matter, for example, in the case of A ∨ ¬A (tautology) or A ∧ ¬A (contradiction),
whether A has the value 1, 0, or #, because according to the classic view tautologies
always have the value 1 and contradictions always have the value 0.

Supervaluations are basically a complicated motivational structure which allows
assigning bivalent truth values to tautologies and contradictions while treating contin-
gent propositions similarly to Łukasiewicz’s system. The motivation is based on the
ontologically remarkable assumption that the truth value of an elementary proposition
may be checked repeatedly (as in scientific measuring).16

In multi-valued systems, the problem of justifying the choice of a certain value
assignment is even worse than in three-valued ones. For example, if the component
proposition A has the truth value 0.615 and B has the truth value 0.423, what should
be the value of A ∧ B? 0.615? 0.423? the average 0.519? 1? 0? And similarly for

16 The appeal of van Fraassen’s construction resides in the fact that multiple value assignments
are essentially a hidden procedural component. This procedural component is coached
within the overall metalanguage-based approach and partial in that it is limited to elemen-
tary propositions. The use of a procedural component is ironic insofar as van Fraassen
aims at saving the bivalence of logical tautologies and contradictions as compared to, e.g.,
Łukasiewicz (1935).



20.5 Sorites Paradox and the Treatment of Vagueness 413

A ∨ B. For each of these different assignments one may find a suitable application. In
the majority of the remaining cases, however, the principle chosen will turn out to be
counterintuitive or at best artificial.

From a history of science point of view such a multitude of more than 50 dif-
ferent alternatives is a clear case of an embarrassment of riches in combination
with descriptive aporia (Sect. 22.2). These two syndromes are an infallible sign that
there is something seriously wrong with the basic premises of the approach in ques-
tion.

In multi-valued logic systems, the mistake resides in the premise formulated in the
above quotation from Lakoff, that propositions may obviously have nonbivalent truth
values. Once this premise has been accepted, one is stuck in a futile search for ad-
equate value assignments to complex propositions, e.g., the question of which truth
value should be assigned to ‘A ∧ B’ if A has the truth value 0.615 and B has the truth
value 0.423.

Instead of accepting this premise we should ask how such peculiar truth values as
0.615 come about in the first place. And with this question we come back to the issue
of the underlying ontology. More precisely: what impact does the structural difference
between the [−sense, −constructive] and the [+sense, +constructive] ontology have
on the formal analysis of vagueness?

We begin with the analysis of an example within the [−sense, −constructive] on-
tology of logical semantics. Let’s assume that ‘A ∧ B’ is a proposition with A =
[The door is open] and B = [The door is red]. Furthermore, let A have the truth
value 0.615 and B the truth value 0.423. Then the conjunction has the following struc-
ture:

20.5.1 VAGUENESS IN [−SENSE, −CONSTRUCTIVE] SEMANTICS

Assigning the truth values 0.615 and 0.423 to the propositions A and B may be mo-
tivated by giving a long story about how the door is slightly non-open and how its
color is slightly non-red. Such stories, though not part of logical theory, are intended
to make us accept the peculiar, artificial values assigned to A and B. Once these as-
signments have been accepted, attention is focussed on the question of which truth
value should be assigned to the complex proposition A ∧ B.

A completely different analysis of this example is obtained within a [+sense,
+constructive] ontology. Its structure contains four different positions which may be
postulated as a source of vagueness. They are marked by the letters a–d:
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20.5.2 VAGUENESS IN [+SENSE, +CONSTRUCTIVE] SEMANTICS

Position d corresponds to the vertical dotted lines in 20.5.1, because there the mean-
ings are assigned to the language surfaces. The places a, b and c have been added by
the transition to a [+sense, +constructive] ontology. In contradistinction to position
d, they have in common that they are interfaces based on pattern matching.

Within a [+sense, +constructive] ontology, the most natural place for handling
vagueness is a. This is because in a a language meaning1, e.g., the concept of red,
is matched with a restricted set of potential contextual referents. This procedure is
based on the principle of best match within a restricted subcontext.

For example, the word red may be used to refer to a pale pink stone, provided that
the other objects in the subcontext are, for example, grey. As soon as a bright red stone
is added, however, the candidate for best match changes and the pale pink stone will
now be counted among the non-red objects. This is not due to a special ‘vagueness’-
property of the color concept red, but rather to a change in the context of use (see also
the handling of metaphoric reference in 5.2.1).

Other places where vagueness may arise naturally are b and c. In b, vagueness is
caused by imprecise perception of the task environment. In c, it is caused by impre-
cise recognition of language expressions. In either case, vagueness originates in the
interaction of the cognitive agent with the external environment and may influence
communication by affecting the matching procedure a.

Thus, the alleged vagueness of the color words does not stem from their semantics.
Instead it is a normal consequence of matching a language concept and a contextual
referent in the pragmatics, a procedure based on the principle of best match in a re-
stricted context of use. This analysis of the semantics and pragmatics of the color
terms can easily be realized operationally within the construction of a robot by defin-
ing concepts like red as intervals of electromagnetic frequency.
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Exercises

Section 20.1
1. What principle is used to apply the logical characterization of truth indirectly to

the analysis of natural language meanings?
2. How can a circulus vitiosus (vicious circle) be avoided, if truth is defined in terms

of meanings and meanings are defined in terms of truth?
3. Describe the rules of existential generalization and substitutivity of identicals,

and explain them with examples.
4. Describe the properties of intensional contexts. What other names have they been

called?
5. Why would it not suffice to let terms for which no referents exist, like unicorn

and Pegasus, denote the empty set?
6. Read Frege (1892) in Frege (1967), pp. 143–162, and explain the distinction

between sense and reference using his morning/evening star example.
7. What does Frege accomplish with this distinction, why is it ontologically prob-

lematic, and how does mathematical realism help him in overcoming this prob-
lem?

Section 20.2
1. Explain Carnap’s formal reconstruction of Frege’s notion of sense.
2. What is an intension? Specify the domain/range structure of intensions for ex-

pressions of different categories.
3. What is the relation between a logical model and a model structure?
4. Define a formal model structure for six verbs, five nouns, and four adjectives

using the definition of intensional logic in SCG, pp. 81f. The sets A, I, and J
should each contain ten elements. For a simplified example see 22.2.1. Describe
and evaluate the experience.

5. Name two modal operators and explain their formal definition within model the-
ory.

6. What is the formal basis for defining the tense operators H and W?
7. What are possible worlds used for in model theory?

Section 20.3
1. Explain in what sense the treatments of intensional contexts by Frege and Carnap

achieve similar results, and in what sense they differ ontologically.
2. What is Montague’s main accomplishment in the logical analysis of natural lan-

guage?
3. Name two problems which are in principle unsolvable for a logical semantics of

natural language.
4. What is a propositional attitude?
5. Explain in detail why a formal treatment of propositional attitudes in logical

semantics would be incompatible with the goals of a theory of truth.
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6. Why is it impossible to operationalize a semantics based on a [−constructive]
ontology?

7. Why would a semantics based on a [+constructive] ontology be pointless if it is
not operationalized?

Section 20.4
1. Describe four different kinds of ontology for systems of semantics.
2. Explain which kinds of ontology the semantics of logical, programming, and

natural language are based on.
3. Explain how a [−sense, −constructive] ontology may be viewed as both a special

case of a [+sense, +constructive] ontology and a higher form of abstraction.
4. Name a phenomenon which can be handled only in systems with a [+sense]

ontology.
5. Name a phenomenon which can be handled only in systems with a [+construc-

tive] ontology.
6. Which ontological property limits systems of classic AI, such as SHRDLU, in

principle to toy worlds?

Section 20.5
1. Explain the Sorites Paradox. How does it relate to the alleged vagueness of nat-

ural language?
2. Explain the notion of semantic presuppositions (CoL, pp. 333–344). How may

they be used to motivate nonbivalent logic?
3. What is the law of excluded middle?
4. What are future-contingent propositions?
5. Name two different interpretations of the third truth value #.
6. Look up the three-valued system of Kleene in Rescher (1969) and compare it

with those of Łukasiewicz and Bochvar.
7. How are the truth values of complex propositions computed from the component

propositions in a many-valued logic? Use the example A ∨ B, where A = 0.37
and B = 0.48.

8. How many different systems are described in Rescher’s (1969) account of non-
bivalent logics? Does this number reflect positively or negatively on nonbivalent
approaches to logic? What could be the reason behind the invention of so many
alternative solutions?

9. Explain how the treatment of vagueness differs in systems with a [−sense, −con-
structive] and a [+sense, +constructive] ontology.

10. What is the role of pragmatics in the analysis of vagueness?
11. Why is it desirable from the viewpoint of classic logic to handle vagueness with-

out a many-valued logic?



21. Absolute and Contingent Propositions

The ontology of a semantic theory can influence empirical analysis profoundly. This
has been demonstrated with the phenomenon of vagueness, which leads to an embar-
rassment of riches within the [−sense, −constructive] ontology of logical semantics,
but falls into the spectrum of normal pragmatic interpretation within the [+sense,
+constructive] ontology of the SLIM theory of language.

It is therefore promising to reanalyze other classical problems of logical seman-
tics within the [+sense, +constructive] ontology in order to disarm them. Of special
interest is the Epimenides paradox, which Tarski (1935, 1944) used to prove that a
complete analysis of natural language is impossible within truth-conditional seman-
tics. Will a [+sense, +constructive] reanalysis of the Epimenides paradox enable
an object language to contain the words true and false without becoming inconsis-
tent?

Section 21.1 develops a distinction between the logical truth values 1 and 0 and the
contingent truth values truec and falsec, based on a comparison of absolute and con-
tingent propositions. Section 21.2 reconstructs the Epimenides paradox in a [+sense,
+constructive] system. Section 21.3 strengthens Montague’s notion of a homomor-
phic semantic interpretation into a formal version of surface compositionality. Sec-
tion 21.4 shows that the strictly time-linear derivation of LA Grammar is not in con-
flict with a homomorphic semantic interpretation. Section 21.5 explains why the math-
ematical complexity of a system may be greatly increased by a semantic interpretation
and how this is to be avoided.

21.1 Absolute and Contingent Truth

In logic, the term proposition has acquired a specialized use, representing sentences
which do not require knowledge of the utterance situation for their semantic interpre-
tation. Such propositions are usually obtained by translating selected natural language
examples into formulas of logic. Compared to the natural language originals, the for-
mal translations are partly simplified and partly supplemented, depending on what the
logical language provides and requires for a proper logical proposition.

R. Hausser, Foundations of Computational Linguistics,
DOI 10.1007/978-3-642-41431-2_21, © Springer-Verlag Berlin Heidelberg 2014
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From the viewpoint of the SLIM theory of language, this specialized use of the term
proposition1 (German ‘Aussage’) is problematic because it constitutes a hybrid be-
tween an utterance (i.e., a pragmatically interpreted or interpretable token) and an
expression (i.e., a pragmatically uninterpreted type). The suppressed distinction be-
tween utterance token and expression type may be brought to light by investigating
the difference between absolute and contingent propositions.

Absolute propositions express scientific or mathematical contents. These are spe-
cial in that they make the interpretation largely independent of the usual role of the
speaker. For example, in the proposition

In a right-angled triangle, it holds for the hypotenuse A and the catheti B and C that
A2 = B2 + C2

the circumstances of the utterance have no influence on the interpretation and the truth
value of the sentence in question, for which reason they are ignored.

The special properties of absolute propositions are reflected in logical truth. This
notion is formally expressed by the metalanguage words false and true, referring re-
spectively to the abstract set-theoretic objects ∅ (empty set) and {∅} (set of empty set)
of the model structure.2

Thereby, logical truth is based on the system of truth conditions of the language at
hand. The referential objects ∅ and {∅} serve merely as model-theoretic fix points into
which the denotations of propositions are mapped by the metalanguage rules of the
formal interpretation (e.g., 19.3.2).

Contingent propositions, on the other hand, are based on sentences with everyday
content such as

Your dog is doing well.

Contingent propositions can only be interpreted – and thereby evaluated with respect
to their truth value – if the relevant circumstances of the utterance situation are known
and are systematically entered into the interpretation.

This requires that the parameters of the STAR be known, i.e., the spatial location S,
the time T, the author A, and the intended recipient R (Sect. 5.3). The characteristic
properties of contingent propositions correspond to a natural notion of truth, repre-
sented by the contingent truth values truec and falsec. Intuitively, a proposition such as

The Persians have lost the battle

may be regarded as truec, if the speaker is an eyewitness who is able to correctly judge
and communicate the facts, or if there is a properly functioning chain of communica-
tion between the speaker and a reliable eyewitness.

Within the SLIM theory of language, the contingent truth values truec and falsec

have a procedural definition. A proposition – or rather a statement – uttered by, for

1 See Sect. 3.4 for a description of propositions proper.
2 Instead of ∅ and {∅}, other notations use 0 and 1, ⊥ and �, no and yes, etc.
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example, a robot is evaluated as truec, if all procedures contributing to communication
work correctly. Otherwise it is evaluated as falsec.3

What follows from this distinction between logical and contingent truth? Using two
different notions of truth for absolute and contingent propositions would clearly be
suboptimal from both the viewpoint of philosophical logic and the SLIM theory of
language. Instead, the goal is an overall system with a uniform semantics which can
correctly interpret any utterance of the form C is true no matter whether C happens to
be a contingent or an absolute sentence.

A straightforward way of unifying the semantics of absolute and contingent state-
ments is treating one kind as a special case of the other. For a [−constructive, −sense]
approach it would thus be desirable if logical semantics would allow a complete treat-
ment of contingent statements as a special case of absolute statements. Conversely, for
a [+constructive, +sense] approach it would be desirable if natural semantics would
allow a treatment of absolute statements as a special case of contingent statements.
Given the choice between the two possibilities, the one applicable with greater gener-
ality is to be preferred.

In logical semantics, the handling of absolute statements may be extended to contin-
gent statements in many instances – as shown by Montague’s model-theoretic analysis
of English.4 The phenomenon of propositional attitudes (Sect. 20.3) has shown, how-
ever, that a proper semantic interpretation – that is, an ontologically justified assign-
ment of the values 1 or 0 – is not always possible. Furthermore, according to Tarski,
sentences of the form C is (not) true are forbidden in the object language. For these
two reasons a general treatment of contingent statements as a special case of absolute
statements is impossible.

In natural semantics, on the other hand, absolute statements may always be treated
as a special case of contingent statements. For the SLIM theory of language, absolute
statements are special only insofar as (i) they can be interpreted independently of
their STAR and (ii) the cognitive responsibility for their content is transferred from
the individual speaker to society and its historically evolved view of the world.

Thus, an absolute statement like The chemical formula of water is H2O is truec if
there is a correctly functioning chain of communication between the speaker and the
responsible experts.5 The true sentences of absolute scientific and logically mathe-

3 A limiting case of this approach is the possibility that two errors accidentally cancel each
other such that a statement happens to be true despite faulty processing. The crucial fact
here is not that an isolated statement turns out to be true by accident, but rather the combina-
tion of errors. Statistically, this special case will occur very rarely and a doubly faulty cog-
nition of a robot will reveal itself in the obvious defects of the vast majority of its utterances.

4 See the sample analyses at the end of PTQ (Chap. 8 in Montague 1974).
5 The notion of a ‘causal chain’ from one speaker to the next is emphasized in Kripke (1972),

especially with regards to proper names and natural classes. The central role of ‘experts’ in
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matical systems are thus reconstructed contingently by interpreting them as cognitive
accomplishments of the associated human – and thus fallible – society.

From this anthropological point of view it is quite normal that an absolute statement
may be considered truec at certain times – due to the majority opinion of the experts
– yet later turn out to be falsec. Such mishaps have happened and still happen quite
frequently in the history of science, as shown by statements like Fire is based on
the material substance of phlogiston or, closer to home, The surface is determined by
repeated application of certain formal operations called “grammatical transformations”
to [base phrase markers].6

The differences in the truth predicates of natural and logical semantics derive di-
rectly from the structural difference between their respective [−sense, −constructive]
and [+sense, +constructive] ontologies:

21.1.1 ONTOLOGICAL FOUNDATION OF CONTINGENT AND LOGICAL TRUTH

Both systems treat truth as relation 5 between the external sign and the external state
of affairs. But they use different methods and concepts to realize this relation.

The [−sense, −constructive] system defines relation 5 directly by means of a suit-
able metalanguage definition 6. The state of affairs and the language expression are
defined by the logician, who – in accordance with the ontology presumed – abstracts
away all interpersonal aspects of communication.7 The set-theoretic model and the
metalanguage-based interpretation of the expression are designed to realize formally

the scientific specification of certain meanings in the language community – e.g., analyzing
water as H2O – is stressed in Putnam (1975), but with the absurd conclusion that meanings
just ain’t in the head (op. cit., p. 227). These authors investigate meaning and reference as
a precondition for the foundation of truth, but they fail to make the necessary distinctions
between the semantics of logical and natural languages, between a [−sense, −constructive]
and a [+sense, +constructive] ontology, and between absolute and contingent truth.

6 See 4.5.2 and 8.5.6.
7 For the logician, the state of affairs is not given by nature, but must be defined as a specific

formal model M. Strictly speaking, logic does not define relation 5 in the world, but only
in a formal system designed to resemble the world.
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what is assumed as obvious to begin with. The purpose is the explicit derivation of
truth values based on if-then clauses.

In a [+sense, +constructive] system, on the other hand, the real world surrounding
the cognitive agent naturally provides a state of affairs. It must be analyzed automati-
cally via the agent’s external interfaces in certain relevant aspects in order to construct
a corresponding agent-internal context of use. Relation 5 between the external sign
and the external state of affairs is thus established solely in terms of cognitive proce-
dures based on the components 1 (contextual recognition/action), 2 (pragmatic inter-
pretation), 3 (semantic interpretation), and 4 (language-based recognition/action). The
purpose is communicating contextual contents by means of natural language between
cognitive agents.

In summary, the contingent truth values truec and falsec concentrate on the cognitive
functions of concrete speaker-hearers in the evaluation of concrete utterances. The
logical truth values 1 and 0, on the other hand, leave these aspects aside, taking the
view of an omniscient being who evaluates the relation between expression types and
states of affairs independently of (the existence of) concrete speaker-hearers.

21.2 Epimenides in a [+sense, +constructive] System

Based on the contingent truth values truec and falsec, let us reanalyze the Epi-
menides paradox. In contradistinction to Tarski’s analysis (Sect. 19.5), the following
[+sense, +constructive] analysis permits an object-language to contain the words true
and false without causing its semantics to be inconsistent.

In preparation for this reanalysis, consider a nonparadoxical use of the expression
C is not a true sentence. This expression, used by Tarski to derive the Epimenides
paradox, consists of a language-based abbreviation, C, and a negative truth statement.
Its legitimate use within a [+sense, +constructive] system is based on the following
structure:

21.2.1 BENIGN CASE OF A LANGUAGE-BASED ABBREVIATION

C abbreviates the expression The blue box is on the red box. The abbreviation is
shown in the external task environment as fact (i). In addition, the task environment
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contains the state of affairs described by the sentence abbreviated as C, shown as
fact (ii).

When the expression C is not a true sentence is processed by a [+sense,
+constructive] system, e.g., CURIOUS, the semantics assigns to the surface a
meaning1 which may be paraphrased as C does not correspond to reality. For this se-
mantic representation the pragmatics attempts to supply a matching contextual struc-
ture.

Thereby it turns out that C is defined as an abbreviation of the expression The blue
box is on top of the red box according to fact (i). The remaining part of the input
expression, i.e., is not a true sentence, is processed by the pragmatic component by
checking whether the content of the long version of C corresponds to reality. The
meaning1 of The blue box is on top of the red box is matched with the corresponding
subcontext, namely fact (ii), whereby it turns out that they do correspond. Thus the
original input C is not a true sentence is evaluated as falsec.

This result may cause a suitably developed robot to react in various different ways.
If it is in a righteous mood, it may protest and argue that C is in fact true. If it is
forbearing, it might quietly register that the speaker was joking, cheating, or plain
wrong. If it is cooperative, it will discuss the facts with the speaker to discover where
their respective interpretations diverge, in order to arrive at an agreement.

There are many language-based abbreviations in combination with contingent truth
statements which are as benign as they are normal.8 For example, the position of
the boxes in fact (ii) of 21.2.2 may be inverted, in which case the input sentence
would be evaluated as truec. Or fact (ii) may be removed from the task environment
of CURIOUS, in which case the robot could not check the truth of the input sentence on
its own. Whether the robot will use unverified hearsay should depend on whether the
speaker providing it has earned the status of a reliable partner or not (CoL, p. 280 f).

A special case of a language-based abbreviation is the Epimenides paradox. Its
[+sense, +constructive] reanalysis has the following structure:

21.2.2 RECONSTRUCTION OF THE EPIMENIDES PARADOX

8 They also include language-based abbreviations without the words true or false, for exam-
ple, C consists of eight words or C consists of seven words. Relative to the situation 21.2.1
these sentences would be evaluated as truec and falsec, respectively. See Quine (1960).
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In a clearly marked location x, the robot reads C is not a true sentence and assigns to
it the meaning1 C doesn’t correspond to reality. As in 21.2.1, the pragmatics attempts
to supply a context of use corresponding to this meaning1.

Taking into account fact (i), it turns out that C is defined as an abbreviation of The
sentence at location x. The remaining part of the input sentence, i.e., is not true, is
processed by the pragmatics by checking whether the content of what C abbreviates
corresponds to reality. For this, the meaning1 of The sentence at location x is matched
with a corresponding subcontext. In contrast to 21.2.1, where the meaning1 of The
blue box is on the red box is matched with the contextual (nonlanguage) fact (ii), the
meaning1 of The sentence at location x in 21.2.2 leads to the language-based referent
(sign) C is not true.

At this point, the pragmatics may treat the referential object C is not true as an
uninterpreted or as an interpreted sign. Treating it as an uninterpreted sign would
be reasonable in combination with, for example, is printed in sans serif. In 21.2.2,
however, treatment as an uninterpreted sign would make no sense. Rather, the most
natural action would seem to interpret the sign, and this starts the semantic-pragmatic
interpretation procedure all over again.

Thus, if the external circumstances bring a [+sense, +constructive] system into the
special situation of the Epimenides paradox, it will get into a cycle and – without addi-
tional assumptions – will remain there. As shown schematically in 21.2.2, the C in C is
not true will be replaced again and again with the corresponding sentence at location x.

Our ontologically based reanalysis of the Epimenides paradox does not result in
its resolution, but rather in its transformation. What appears as a logical contra-
diction on the level of the semantics in Tarski’s [−sense, −constructive] system
(Sect. 19.5) reappears as an infinite recursion of the semantic-pragmatic interpreta-
tion. The [+constructive, +sense] reanalysis disarms the Epimenides paradox, both
on the level of the semantics and the theory of communication, because

– the words truec and falsec may be part of the object language without causing a
logical contradiction in its semantics, and

– the recursion caused by the Epimenides paradox can be recognized in the pragmat-
ics and taken care of as a familiar9 kind of failing interpretation without adversely
affecting the communicative functioning of the system.

The reanalysis avoids Tarski’s contradiction in the semantics because the meta-
language distinguishes between (i) the logical truth values 1 and 0 of the T-condition,
(ii) the contingent truth values truec and falsec of the object language, and replaces the

9 It holds in general of pragmatic interpretation that a continuous repetition in the analysis
of one and the same contextual object should be prevented, for example, by means of a
counter. In this way the recursion caused by the Epimenides paradox may be recognized and
stopped. Discontinuing a particular interpretation attempt in order to choose an alternative
scheme of interpretation or to ask for clarification are normal parts of pragmatics.
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metalanguage phrase is (not) a true sentence with the (iii) procedural correlate does
(not) correspond to reality.

If we were to assume that the semantic component of CURIOUS was a truth-
conditional semantics like Montague grammar, then the [+sense, +constructive] re-
analysis of the Epimenides paradox would not result in Tarski’s contradiction

a. C is 1 if and only if C is not 1

but rather in the contingent statement

b. C is 1 if and only if C does not correspond to reality.

In contrast to version a, version b does not contain a logical contradiction.
For the SLIM theory of language, the reanalysis of the Epimenides paradox is impor-

tant. The reanalysis opens the way to define a complete semantics of natural language
because it avoids contradiction even if the language to be modeled contains the words
true and false.

For the logical semantics of natural language, on the other hand, the reanalysis is
of little help. This is because the procedural notion of contingent truth – essential for
avoiding Tarski’s contradiction – can be neither motivated nor implemented outside a
[+constructive, +sense] ontology.

21.3 Frege’s Principle as Homomorphism

In artificial languages, the form of the syntax and its associated semantics is decided
by the language designers. Their job is to construct the artificial language as best as
possible for a given task. The natural languages, on the other hand, are given in all
their variety as the historically evolved conventions of their speech communities.

Computational linguistics has the task of functionally reconstructing the mechanism
of natural language communication as realistically as possible (reverse engineering).
The starting point of this reconstruction is the natural surfaces, because they are man-
ifested in the acoustical or visual modality as concrete signs.

The meanings, on the other hand, are of a cognitive nature. They lie in the dark for
the outside observer (4.3.2), and can only be deduced from (i) the lexical and syntactic
properties of the surfaces and (ii) their use in different contexts of interpretation.

At the most basic level, the deduction is based on Frege’s principle (4.4.1), accord-
ing to which the meaning of a complex expression results from the meaning of its
parts and the mode of their composition. Thus the purpose of natural syntax is the
composition of semantic representations by putting together the associated surfaces.

The building up of complex meanings1 via syntactic composition is achieved by
defining (i) for each word form a semantic counterpart and (ii) for each syntactic op-
eration a simultaneous semantic operation. Montague formalized this structural cor-
relation between syntax and semantics mathematically as a homomorphism.10

10 The formal definitions may be found in Montague’s paper Universal Grammar, Montague
(1974), especially pp. 232–233.
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The notion of a homomorphism captures the intuitive concept of a structural simi-
larity between two complex objects. A structural object so is homomorphic to another
structural object SO if for each basic element of so there is a (not necessarily basic)
counterpart in SO, and for each relation between elements in so there is a correspond-
ing relation between corresponding elements in SO.

To express the structural similarity between the semantic level and the surface level,
Montague defined a homomorphism formally as a relation between two (uninter-
preted) languages.

21.3.1 FORMAL DEFINITION OF A HOMOMORPHISM

Language-2 is homomorphic to language-1 if there is a function T which

– assigns to each word of category a in language-1 a corresponding expression of
category A in language-2, and

– assigns to each n-place composition f in language-1 a corresponding n-place com-
position F in language-2, such that

– T(f(a,b)) = F((T(a))(T(b))).

According to this definition, the following are equivalent: either (i) combining a and
b first in language-1 via f(a,b) after which the result a_b is translated by T into A-B of
language-2, or (ii) translating a and b first via T(a) and T(b) into A and B, respectively,
and then combining them in language-2 via F(A,B) into A-B:

21.3.2 SCHEMATIC REPRESENTATION OF MONTAGUE’S HOMOMORPHISM

A grammar in which the semantics (i.e., language-2) is homomorphic to the syntax
(i.e., language-1) satisfies the so-called homomorphism condition. In such a system (i)
each word form (basic element) in the syntax must be assigned a semantic counterpart
(meaning1) and (ii) each syntactic composition of word forms and/or expressions must
be assigned a corresponding composition on the semantic level:

21.3.3 SYNTACTIC COMPOSITION WITH HOMOMORPHIC SEMANTICS

The homomorphism condition by itself, however, is not sufficient as a formalization
of Frege’s principle, insofar as it is defined for analyzed surfaces (Sect. 4.4), whereas
natural language communication is based on unanalyzed surfaces.

The problem is that the transition from unanalyzed to analyzed surfaces (interpreta-
tion) and vice versa (production) has been misused to enrich the levels of the analyzed



426 21. Absolute and Contingent Propositions

surface and/or the meaning1 by means of zero elements or identity mappings. From
the viewpoint of the SLIM theory of language, this is strictly illegal because it violates
the methodological principle of surface compositionality.

The use of zero elements and identity mappings is illustrated schematically in 21.3.4
and 21.3.5, respectively, in which the zero elements are written in italics (\it).

21.3.4 USE OF THE ZERO ELEMENT b (illegal)

1. Smuggling in during interpretation (↓) – Filtering out during production (↑)

2. Filtering out during interpretation (↓) – Smuggling in during production (↑)

Zero elements of kind 1 are postulated whenever the unanalyzed surface does not
provide what the grammar theory at hand would like to find. Examples are the postu-
lation of a ‘zero determiner’ in

Peter drank det wine

or a ‘zero subject’ in the imperative

you help me!

Zero elements of kind 2 are postulated whenever the surface contains something
which the grammar theory at hand would not like to find. Examples are (i) the con-
junctions that in sentential objects, e.g.,

Peter believes that Jim is tired.

and (ii) to in infinitives. They are regarded as superfluous and called ‘syntactic sugar.’
The two kinds of zero elements are also combined, as in the passive

det wine was ordered by Peter

or in infinitives

Peter promised Jim to Peter sleep
Peter persuaded Jim to Jim sleep.

Being at the core of nativism’s “linguistic generalizations,” zero elements continue
to be popular. They are usually supported with elaborate linguistic argumentations, as
for example by Chomsky, who calls his zero elements ‘traces.’
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Because zero elements are not marked in the unanalyzed surface or the meaning1,
they must be inferred by the parser. This is done by (i) adding them hypothetically
into all possible positions and (ii) testing each case by attempting a derivation.

As soon as a formal theory of grammar admits a single zero element, any given
unanalyzed surface or meaning1 raises the question of where and how often this zero
element should be postulated. For this reason the use of zero elements pushes the com-
plexity of such systems sky-high, making them either NP -complete or undecidable
(Chaps. 8, 12).

Equivalent to the problem caused by zero elements is the one caused by identity
mappings of the form x ◦ y → x. This is shown by the schematic examples in 21.3.5,
which use no zero elements in the input to the composition rules, yet have the same
outputs as in 21.3.4. The reason is that the rule of composition suppresses the contri-
bution of b in the surface (kind 1) or in the meaning (kind 2).

21.3.5 USE OF AN IDENTITY MAPPING (illegal)

1. Filtering out during production (↑) – Smuggling in during interpretation (↓)

2. Smuggling in during production (↑) – Filtering out during interpretation (↓)

It has been argued that zero elements and identity mappings do not violate the homo-
morphism definition 21.3.1.11 This requires, however, that the choice between treating
the element marked by italics as part of the homomorphism (as required by the kind
1 structures) or not (as required by the kind 2 structures) is left open. Not making the
choice explicit is a clear violation of mathematical method.

In short, zero elements and identity mappings alike (i) destroy the systematic cor-
relation between syntax and semantics, (ii) have a devastating effect on mathematical
complexity, and (iii) fail to maintain the minimal methodological standard of concrete-
ness. To ensure a proper functioning of the homomorphism condition and to prevent
the use of zero elements and identity mappings, we present a formally oriented variant
of the SC-I principle (4.5.1).

11 Even Montague used quasi-transformational derivations of anaphoric pronouns and a syn-
categorematic treatment of logical operators, thus violating the spirit of Frege’s principle
and the homomorphism condition. A detailed account may be found in SCG.
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21.3.6 SURFACE COMPOSITIONALITY II (SC-II PRINCIPLE)

A semantically interpreted grammar is surface compositional if and only if

– the syntax is restricted to the composition of concrete word forms (i.e., no zero
elements and no identity mappings),

– the semantics is homomorphic to the syntax (as defined in 21.3.1), and
– objects and operations on the level of semantics which correspond to the syntax

in accordance with the homomorphism condition may not be realized by zero ele-
ments or identity mappings.

The SC-I principle applies Frege’s principle to concrete surfaces of language in order
to arrive at (i) a strictly compositional syntax and (ii) a clear separation of semantics
and pragmatics. The SC-II principle makes this goal more precise by defining surface
compositionality as a formal strengthening of the homomorphism condition.

21.4 Time-Linear Syntax with Homomorphic Semantics

The functor-argument constructions of natural language have a hierarchical seman-
tic structure, while the surfaces of natural language are linear. In order to supply the
time-linear derivation with a homomorphic semantics, the resulting semantic hierar-
chy must be built in a manner that is orthogonal to the time-linear derivation struc-
ture.12 This comparatively new method13 consists of two steps which correspond to
the conditions of the homomorphism condition:

21.4.1 TIME-LINEAR BUILDING UP OF SEMANTIC HIERARCHIES

Step 1: Translation of word forms into component hierarchies
Each word form is mapped into a semantic component hierarchy (tree). The
structure of the tree is determined by the syntactic category of the word form.

12 This is different from the traditional method of building semantic hierarchies by means of
possible substitutions. As shown in 10.1.6, PS Grammar derives semantically motivated
hierarchies (constituent structures at the level of deep structure) by substituting elemen-
tary nodes with more complex structures (top-down branching); C Grammar derives such
hierarchies by substituting complex structures with elementary nodes (bottom-up amalga-
mating).

In other words, the formalisms of PS and C Grammar in their respective context-free
forms are alike in that their linguistic applications are (i) conceptually based on constituent
structure (Sects. 8.4, 8.5) and (ii) achieve the buildup of the constituent structure hierarchies
by using syntactic derivations which directly reflect the structure of the underlying semantic
intuitions. This method is not compatible with a time-linear derivation order and therefore
unsuitable for semantically interpreting an LA Grammar.

13 An informal description was first presented in CoL, pp. 42f., and illustrated with an LA
parser for a semantically interpreted fragment of English (op.cit., pp. 345–402).
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Step 2: Left-associative combination of component hierarchies
For each combination of the left-associative syntax there is defined a corre-
sponding combination of component hierarchies on the level of the semantics.

Step 1 is illustrated below with the analyzed word forms the and man.

21.4.2 DERIVATION OF COMPONENT HIERARCHIES FROM WORD FORMS

The two subtrees are derived automatically from the categories (SN′ SNP) and (SN),
respectively. The subtree of content words contains the associated concept type, rep-
resented by the base form of the surface (here man). Next consider step 2:

21.4.3 TIME-LINEAR COMPOSITION WITH HOMOMORPHIC SEMANTICS
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For each word form in the syntax there is a corresponding elementary component
tree and for each left-associative composition in the syntax there is a composition of
component trees in the semantics. To indicate the strictly compositional nature of the
semantic hierarchy, the elementary component trees are outlined graphically and each
is marked with the position number of the word form from which it was derived.

For example, component tree 1 (for the in position 1) is a functor, which takes the
component tree 2 (for man in position 2) as its argument. The resulting (complex)
component tree 1+2 (i.e., the NP representing the man) is a sentence start which
serves as the argument for the (elementary) component tree 3. Component tree 3 is
derived from the third word form gave, whereby the syntactic category (N′ D′ A′ V)
determines the form of the tree. The resulting complex tree 1+2+3 is then combined
with the elementary component tree 4, which serves as an argument derived from the
determiner the. The complex component tree 1+2+3+4 in turn takes the elementary
component tree 5 derived from the noun girl as argument, etc.

The category-based derivation of elementary subtrees from the word forms is han-
dled by automatic word form recognition (LA Morph). The time-linear combination
of the semantic component trees is handled by semantic clauses in the combination
rules of LA Syntax.

The simultaneous syntactic-semantic derivation shows in principle14 how a time-
linear LA Syntax may be supplied with a surface compositional, homomorphic se-
mantic interpretation. Moreover, because zero-elements or identity mappings are used
neither in the syntax nor in the semantics, it is strictly surface compositional in the
sense of SC-II.

The semantic hierarchy derived expresses an analysis in which the verb give forms
a relation between the actants man, woman, and book, whereby their roles are char-
acterized by different cases. Superficially, this may seem to resemble the constituent
structures of PS-grammar (Sects. 8.4–9.5). From the viewpoint of constituent structure
analysis, however, the hierarchy in 21.4.3 satisfies neither its intuitive assumptions nor
its formal definition 8.4.3.

More specifically, a constituent structure analysis would proceed on the assumption
that gave is semantically closer to the girl and the book than to the man. These as-
sumptions, supported by substitution (8.4.7) and movement (8.4.8) tests, result in a
tree structure in which the subject and the verb phrase are treated as sister nodes (in
accordance with the rewriting rule S → NP VP), a structure not accommodated in the
above hierarchy.

Thus, all constituent structures are by definition semantic hierarchies, but not all
semantic hierarchies are constituent structures. A semantic hierarchy which is not a

14 The analysis represents the development stage of CoL, where this kind of semantic inter-
pretation has been implemented as a running program written in Lisp and tested on a sizable
fragment of English. What is still missing there, however, is a declarative presentation of
the semantic rules. See Chap. 24 for an advanced form of LA Semantics.
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constituent structure is illustrated in 21.4.3. It is motivated linguistically in terms of
two general principles, namely (i) the functor-argument structure and (ii) the time-
linear derivation order of natural language.

21.5 Complexity of Natural Language Semantics

According to the CoNSyx hypothesis 12.5.7, the natural languages fit into the class
of C1 languages (Sect. 11.5) and parse in linear time. The benefits of an efficient
syntax are wasted, however, if its semantic interpretation has mathematical properties
which push the overall system into a complexity class higher than that of the syntax
alone. For this reason a formal semantic interpretation of an LA Syntax for natural
language is empirically suitable only if the semantic interpretation does not increase
the complexity of the resulting overall system as compared to the syntax alone.

That the low complexity of a syntactic system may easily be pushed sky-high by the
semantic interpretation is illustrated by the following examples from mathematics:

Both examples satisfy the homomorphism condition. In example (a), the word form π

(Pi), standing for the ratio of the circumference of a circle to its diameter, denotes an
infinitely long transcendental number. In example (b), the simple syntactic structure
1:3 denotes an infinitely long periodic number.

These examples show that an elementary word form or a very simple composition
can denote infinitely long numbers in mathematics or nonterminating procedures in
computer programs. Thereby, the semantic interpretation pushes the complexity from
linear in the original syntax to exponential or undecidable in the overall system.

How can natural language semantics retain low complexity if it includes mathe-
matical objects which are infinite and thus of high complexity? The crucial structural
basis for this is the principled distinction between (i) the meaning1 of language ex-
pressions, (ii) the internal subcontext providing the contextual referents, and (iii) the
external counterparts of the contextual referents.

According to the SLIM-theoretic analysis of natural communication, one function
of meaning1 is as a key to information which is stored in the intended ‘files’ of the
internal subcontext (Sect. 5.3). To perform this function, minimal meanings1 suffice.
They must be differentiated only to the degree that the correct contextual referents and
relations can be matched. This process is supported by preselecting and restricting the
relevant subcontext using the pragmatic circumstances of the interpretation (especially
the STAR, 5.3.2).

The basic accessing function of natural language meaning shows up in the example
Suzanne is writing a thesis on the Trakhtenbrot Theorem. We have no trouble under-
standing this sentence even if we have no idea of the mathematical content referred to
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with the noun phrase Trakhtenbrot Theorem. The relation between the key, the context
file, and the mathematical content may be represented schematically as follows:

21.5.1 INTERPRETATION OF ‘TRAKHTENBROT THEOREM’

The left-hand side shows the speaker-hearer’s internal processing of language while
the right-hand side shows the external situation with (A) the sign Trakhtenbrot The-
orem and (B) the corresponding mathematical content. Analogous to 20.5.2 and
21.1.1, the internal analysis is based on the [+sense, +constructive] ontology of
the SLIM theory of language, while the associated external analysis represents the
[−sense, −constructive] ontology of mathematical realism.

In accordance with mathematical realism, the content of the theorem is located in
the external real world, outside the cognitive agent.15 The meaning1 of the expres-
sion Trakhtenbrot Theorem in natural semantics, in contrast, is a cognitive, speaker-
hearer-internal concept. It may be paraphrased roughly as mathematical theorem dis-
covered by a person named Trakhtenbrot. This minimal semantic representation is
sufficient as the key to contextual files the content of which may vary widely from
one speaker-hearer to another, depending on their knowledge of mathematics in gen-
eral and Trakhtenbrot’s Theorem in particular.

For example, if a speaker-hearer encounters the expression Trakhtenbrot Theorem
for the first time, a new contextual file is opened which contains no more than the ex-
pression and the circumstances of the utterance situation. An average speaker-hearer
may nevertheless be said to understand the expression in such a situation – as shown
by the fact the he would be able to, for example, procure literature on the theorem.

A more demanding task would be to recognize the theorem solely on the basis of
its content, as when choosing it from a collection of unnamed theorems. For this,
the relevant contextual file of the speaker-hearer would have to contain specialized

15 This example shows clearly that the difficulties of logical semantics with the Epimenides
paradox (Sect. 19.5), the analysis of propositional attitudes (Sect. 20.3), and the treat-
ment of vagueness (Sect. 20.5) do not argue against mathematical realism and its [−sense,
−constructive] ontology at all. Rather, the described difficulties of logic result solely from
the misguided attempt to transfer a [−sense, −constructive] semantics designed for the
treatment of mathematical and natural science to the meaning analysis of natural language.
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mathematical knowledge. The acquisition of this knowledge does not affect the literal
meaning of the expression Trakhtenbrot Theorem, however, but only the associated
contextual file of an individual speaker-hearer.16

Structures of high mathematical complexity have no place in the semantic compo-
nent (2) of natural language. Like the vastness of the universe, the laws of physics, or
real beer mugs, they exist outside of the cognitive agent in position B and in a sec-
ondary way as contextual structures in position 3 of 21.5.1. Even contextual referents
which do not originate in the external reality, like the acute individual toothache17 of a
cognitive agent, should not be treated in position 2 but located instead in the relevant
internal subcontext 3.

The functioning of language meanings as keys for accessing the potentially com-
plex – though always finite – contents of the internal context does not require that
the semantics be of any higher complexity than the associated syntax. This conclu-
sion is summarized as the Complexity of Natural language Semantics hypothesis, or
CoNSem hypothesis for short:

21.5.2 CONSEM (COMPLEXITY OF NAT. LANG. SEMANTICS) HYPOTHESIS

The semantic interpretation of a natural language syntax within the C LAGs
is empirically adequate only if there is a finite constant k such that

– it holds for each elementary word form in the syntax that the associated
semantic representation consists of at most k elements, and

– it holds for each elementary composition in the syntax that the associated
semantic composition increases the number of elements introduced by the
two semantic input expressions by maximally k elements in the output.

This means that the semantic interpretation of syntactically analyzed input of
length n consists of maximally (2n − 1) · k elements.

A semantic interpretation which complies with the CoNSem hypothesis will in-
crease the complexity of the overall system – as compared to the syntax alone – by
only a constant. For example, if k = 5, then the semantic interpretation of a syntacti-
cally analyzed input of length 3 will consist of maximally (2 ·3−1) ·5 = 25 elements:

21.5.3 ILLUSTRATION OF THE CONSEM HYPOTHESIS

16 A similar analysis holds for the expression π . From the viewpoint of mathematical realism,
the referent of π may be regarded as an infinitely long number in position B of 21.5.1. Its
internal, cognitive counterpart in position 3, on the other hand, is a finite approximation,
contained in a context file which may be accessed by a minimal meaning1 (position 2).

17 Cf. footnote 9 in Sect. 20.3.
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In other words, CoNSem systems are in the same overall complexity class as their C
LAG syntax alone.

The CoNSem hypothesis is applicable to the whole class of C LAGs. This is because
(i) C LAGs limit the complexity of syntactic composition by a finite constant and
(ii) different degrees of complexity within the C LAGs are caused solely by different
degrees of ambiguity.18 For the analysis of natural languages, however, the CoNSem
hypothesis is of special interest in connection with the CoNSyx hypothesis 12.5.7,
which puts the syntax of natural languages into the linear class of C1 LAGs.

CoNSyx and CoNSem are empirical hypotheses and as such they can neither be
proven nor refuted through logic alone. Instead they serve as formal constraints. Their
joint fulfillment guarantees any empirical analysis of natural language to be of linear
complexity.

To refute the two hypotheses one would have to present constructions of natural
language which clearly cannot be analyzed within the boundaries of CoNSyx and
CoNSem. Conversely, to support the two hypotheses it must be shown in the long run
that maintaining them does not create unsurmountable difficulties – in contradistinc-
tion to, for example, the historical precedent of constituent structure.19

Whether or not the empirical analysis of a problematic construction will satisfy
CoNSyx and CoNSem depends not only on the skill of the person doing the syntactic-
semantic analysis, but also on the question of whether the problem in question is really
of a syntactic-semantic nature (cf. 12.5.5 and 12.5.6 as well as 20.5.1 and 20.5.2).
Therefore the possibility of maintaining the CoNSyx and CoNSem hypotheses can
only be properly evaluated relative to a functioning overall model of natural language
communication.

Exercises

Section 21.1
1. Explain the notion of a logical proposition in comparison to the notions ‘utter-

ance’ and ‘expression.’
2. Describe the difference between absolute and contingent propositions using ex-

amples.

18 Sects. 11.4 and 11.5.
19 The principle of constituent structure turned out to be incompatible with the empirical facts

because of the discovery – or rather the belated recognition – of discontinuous structures.
See Sects. 8.4 and 8.5.
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3. How are logical truth values represented formally?
4. What is the difference between the notions of logical and contingent truth?
5. What are the preconditions for the interpretation of contingent propositions, and

why is it that absolute propositions seem to be free from these preconditions?
6. Why is it impossible for logical semantics to treat contingent propositions gen-

erally as a special case of absolute propositions?
7. How is the status of truth affected by the reanalysis of absolute propositions as

special cases of contingent propositions?
8. What role is played by the ‘experts’ in determining the contingent truth value of

absolute propositions?
9. Describe how [+sense, +constructive] and [−sense, −constructive] systems dif-

fer in their respective methods for establishing a relation between language ex-
pressions and states of affairs.

10. What is meant by the words true and false in everyday communication?

Section 21.2
1. Explain the interpretation of the sentence C is not true within the framework of a

[+sense, +constructive] system using the analysis of a benign example.
2. Explain the reanalysis of the Epimenides paradox in a [+sense, +constructive]

system.
3. Why does the reanalysis of the Epimenides paradox require a change of Tarski’s

ontology?
4. What is the difference between treating a given language expression as an un-

interpreted vs. an interpreted sign? Explain the difference using examples from
Quine (1960).

5. Is the Epimenides paradox based on a contingent or an absolute proposition?
6. In what sense is the Epimenides paradox preserved in the [+sense, +construc-

tive] reanalysis and in what sense is it disarmed?
7. Why is the introduction of contingent truth values crucial for the definition of an

object language which can contain the words true and false without making the
overall semantics inconsistent?

8. To what degree is a transfer of logical semantic analyses to the semantics of
natural language possible?

9. Why is the reanalysis of the Epimenides paradox of little help to the logical
semantics of natural language?

10. What kinds of errors in the cognitive processing of a [+sense, +constructive]
system result in false statements? When does the system produce true state-
ments?

Section 21.3
1. How do the artificial and the natural languages differ from the viewpoint of a

language designer?
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2. What is the connection between Frege’s principle, surface compositionality, and
Montague’s use of a homomorphism to relate syntax and semantics?

3. Explain the formal definition of a homomorphism and illustrate it with a formal
example.

4. Explain why the use of zero elements and identity mappings makes the homo-
morphism condition vacuous.

5. What mathematically dubious assumption is needed for arguing that zero ele-
ments and identity mappings do not formally violate the homomorphism condi-
tion?

6. Why does the use of zero elements increase the mathematical complexity of a
system?

7. Why does the use of zero elements violate the most minimal methodological
standard of concreteness?

Section 21.4
1. Explain the SC-II principle in comparison with SC-I.
2. Why is the fixed surface compositional connection between the semantics and

the syntax functionally necessary in natural communication?
3. Describe three different methods of building up a semantic hierarchy.
4. Why is a time-linear building up of semantic hierarchies compatible with main-

taining a homomorphic semantics?
5. What is meant by the ‘functor-argument structure’ of a semantics?

Section 21.5
1. What is the complexity class of an LA Syntax for natural language?
2. Show with examples why a semantic interpretation can increase the complexity

of a syntactic system.
3. Explain the functioning of natural language meanings using the Trakhtenbrot

Theorem example.
4. Summarize why the underlying theory of language has a direct impact on

the complexity of syntax and semantics, using the example of PP-attachment
(Sect. 12.5) for syntax and the example π for semantics.

5. Summarize why the underlying theory of language has a direct impact on the
way in which relevant phenomena are analyzed, using the examples of the Epi-
menides paradox, propositional attitudes, vagueness, intensional contexts, and
semantic presuppositions.

6. Why is a [−sense, −constructive] ontology appropriate for mathematical real-
ism, but not for the analysis of natural language?

7. What is the CoNSem hypothesis and what would be required to refute it?



22. Database Semantics

The SLIM1 theory of language outlined in Chaps. 3–6 serves as the theoretical founda-
tion for a computational model of natural language communication, called Database
Semantics (DBS).2 Database Semantics models the transfer of information from the
speaker to the hearer by representing the knowledge of speaker and hearer, respec-
tively, in the form of agent-internal databases. Natural language communication is
successful if a certain database content, encoded by the speaker into natural language
signs, is reconstructed analogously in the database of the hearer.

Section 22.1 illustrates the database metaphor of natural communication with a sim-
ple example. Section 22.2 explains that logical models and frame-theoretic knowledge
bases lead to problems of descriptive aporia and embarrassment of riches, making
them unsuitable for representing the agent-internal context of use. Section 22.3 pro-
vides the NEWCAT rule format (used in Chaps. 16–18) with a semantic interpretation.
The resulting contents are shown in Sect. 22.4 to be suitable for modeling reference
as a pattern matching between the language and context levels. Section 22.5 discusses
an instant in which adding the semantic interpretation simplifies the NEWCAT syn-
tax.

22.1 Database Metaphor of Natural Communication

A computational model of natural language communication must do without postu-
lating an external relation between the sign and the referent, as in [−sense, −con-
structive] systems (Sect. 20.4). Using a [+sense, +constructive] ontology instead,
SLIM treats reference as an agent-internal, cognitive process, based on matching

1 As explained in the Introduction, Sect. XI, the acronym SLIM abbreviates Surface composi-
tional, time-Linear, Internal Matching, which are the methodological, empirical, ontologi-
cal, and functional principles of the approach. When the acronym is viewed as a word, SLIM

indicates low mathematical complexity, resulting in the computational efficiency required
for real-time processing.

2 As the name of a specific scientific theory, the term Database Semantics is capitalized. DBS
is distinct from the generic use of the term in the sense of “semantics of databases.” For
example, Bertossi et al. (eds.) (2003) discuss semantic constraints on databases.
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between language meanings and contextual counterparts. This basic principle of
Internal Matching3 is illustrated below with the schematic structure of a talking
robot:4

22.1.1 IMMEDIATE REFERENCE BASED ON INTERNAL MATCHING

The schema shows the core values (concepts) without their embedding into proplet
shells (Sect. 3.4). The robot recognizes the referent [1] by applying the concept type
[2] (3.3.1) to the incoming parameter values (3.2.3) and instantiating the referent as
a concept token [3] (3.3.3). The sign [5] is recognized in a similar way. The lexicon
assigns to the sign square the concept type [2] as its literal meaning [4].5

The relation between the levels of language and context is established by matching
the (language) concept type [4] and the (context) concept token [3] (4.2.2). A concept
type used as a literal meaning may be matched with any number of referential to-
kens. This models the flexibility which distinguishes the natural from the logical and
programming languages (Sects. 19.1 and 19.2).

Internal matching with an isolated content word, here square, may be extended
to full-blown natural language communication. According to the database metaphor,
the speaker’s and the hearer’s knowledge are contained in agent-internal databases.
Communication is successful if the speaker encodes a certain content into language,
and the hearer reconstructs this content analogously in his database – in terms of (i) a
correct decoding and (ii) a correct storage at a corresponding location.

The speaker’s selection of content and the hearer’s analogous reconstruction in
successful communication constitute a storage and retrieval problem. Its nature
may be explained by comparing the interaction between a user and a conventional
database (DB interaction), and between a speaker and a hearer (NL communica-
tion):

3 Internal matching is represented by the letters IM in the SLIM acronym.
4 See also Chaps. 3 and 4, especially 4.3.2.
5 This general component structure will be used in Sect. 23.5 for the ten SLIM states of

cognition. To facilitate comparison, the SLIM states are shown uniformly with their external
interfaces on the left.
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22.1.2 CONVENTIONAL DATABASE INTERACTION

The interaction takes place between two different entities, the user (ovals) and the
database (large boxes). The small boxes represent the language signs serving as input
and output. The user controls the storage and retrieval operations of the database with
a programming language, the commands of which are executed as electronic proce-
dures.

Next consider the transfer of content between a speaker and hearer:

22.1.3 INTERACTION BETWEEN SPEAKER AND HEARER

Here the large boxes represent cognitive agents which may be natural or artificial.
There is no user. Instead, the interaction takes place between two similar and equal
cognitive agents, which control each other’s flow of information by alternating in
the speak and hear modes (turn-taking). The speaker controls language production
as an autonomous agent. The hearer’s interpretation is controlled by the incoming
language expressions. In contrast to a conventional database, e.g., an RDBMS, no
separate index is needed by the hearer to reconstruct the storage location the content
had in the speaker’s database or to retrieve relevant content for inferencing.

The database metaphor may be applied to statements, questions, and requests alike.
In statements, the content encoded by the speaker must be decoded by the hearer and
stored in an analogous location. In questions and requests, the hearer must locate the
content and the task, respectively, to derive adequate responses.

The database metaphor assumes from the outset that the communicating databases
are embedded in cognitive agents, natural or artificial, with language-based as well
as nonlanguage-based recognition and action. The latter provide the context of use
relative to which the language expressions are interpreted. As an example consider
the interpretation of the sentence Fido likes Zach.
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Prior to the interpretation we specify a suitable context of use:6

22.1.4 SKETCH OF A SIMPLE SUBCONTEXT

The subcontext is depicted as a semantic hierarchy in a preliminary conventional form
familiar from knowledge representations in artificial intelligence. According to this
representation, Fido is a dog, Felix and Fritz are his friends, and Zach and Eddie are
his brothers.

In the hear mode, the pragmatic interpretation of the expression Fido likes Zach con-
sists in embedding the expression’s meaning1 into the context structure. This means
that the context is extended to contain the additional relation like between Fido and
Zach, as illustrated below.

22.1.5 ADDING THE CONTENT OF Fido likes Zach TO 22.1.4

In the speak mode the pragmatic interpretation consists in extracting the meaning1 of
Fido likes Zach from the subcontext. This means that the speaker copies a relevant
part of the contextual substructure and maps it into natural language.

The task of the pragmatics is to describe the embedding (5.4.1) and extraction
(5.4.2) between the semantic representation and the context in terms of explicit, pro-
grammable rules. This requires the definition of (i) a grammar including syntax and
semantics, (ii) an internal context of use, and (iii) a pragmatics defined as a matching
procedure between the semantic representation and the context of use.

22.2 Descriptive Aporia and Embarrassment of Riches

To facilitate implementation of the matching procedure between language meanings
and the context of use, the representation of the two levels should be defined in terms
of the same formalism. What formalism would be suitable for this purpose? We be-
gin by investigating two well established systems from different traditions, namely
(a) formal logic and (b) frame theory.

6 Based on Carbonell and Joseph (1986).
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The logical analysis of natural language is exemplified by Montague grammar,
which is widely admired for its high standard of formal explicitness and differenti-
ation of content. Within this framework, the information contained in 22.1.4 may be
represented equivalently as follows (following Montague (1974), Chap. 8, PTQ):

22.2.1 MODEL-THEORETIC DEFINITION OF THE CONTEXT 22.1.4

Let MS be a model structure (A, I, J, ≤, F), where A, I, J are sets, and F is a
denotation function.
A, I, J, and F have the following definition:
A = {a0, a1, a2, a3, a4}
I = {i1}
J = {j1}
F(fido’)(i1, j1) = a0

F(felix’)(i1, j1) = a1

F(fritz’)(i1, j1) = a2

F(zach’)(i1, j1) = a3

F(eddie’)(i1, j1) = a4

F(dog’)(i1, j1) = {a0}
F(fido-friend’)(i1, j1) = {a1, a2}
F(fido-brother’)(i1, j1) = {a3, a4}

At the index (i1, j1) the proper names fido, felix, zach, and eddie denote the model-
theoretic individuals a0, a1, a2, a3, and a4, respectively, while the properties fido-friend
and fido-brother denote the sets {a1, a2} and {a3, a4}, respectively.

The original purpose of such a definition is to serve in the explicit interpretation
of logical propositions (Sect. 19.3). For example, the semantic interpretation of fido-
friend’(felix’) relative to the formal model would render the truth value 1, whereas
fido-friend’(zach’) would be evaluated as 0.

This metalanguage-based derivation of truth values presupposes a [−sense,
−constructive] ontology and treats the formal model as a representation of the ex-
ternal real world. It is possible, however, to ontologically reinterpret the formal model
structure:

Instead of defining the model as a set-theoretic description of the real, external world
in a [−sense, −constructive] approach, we may choose to view it as a specification of
the cognitive, internal subcontext in a [+sense, +constructive] system.7 This instan-
tiates the strategy – used frequently in science – of specifying a new construct (here:
the agent-internal context of use) in terms of a known, well-defined formalism (here:
model theory).

The reinterpretation uses truth conditions to build models which make specific
propositions true. These models are used to represent (i) the meaning of language
and (ii) the context of use. The goal is to realize internal matching pragmatics by

7 This approach was explored in SCG.
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embedding meaning models into context model structures and by extracting meaning
models from context model structures in a rhetorically meaningful way.

For example, extending the hearer context to the meaning of a new sentence such as
Fido likes Zach would require that the formula

F(like)(i1, j1) = {(a0, a3)}
be added automatically to 22.2.1, thus asserting the additional relation like between a0

(Fido) and a3 (Zach) at (i1, j1). Programming this as a hear mode procedure requires
inferring the intended referents and the correct index from the sign and its utterance
situation (5.3.4), which turns out to be impossible (descriptive aporia).8

Another method to formally define a content is frame theory. Based on the pro-
gramming language Lisp, it has been widely used in artificial intelligence. A frame
is an abstract data type consisting of a frame name, an arbitrary number of slots, and
for each slot an arbitrary number of fillers. A larger collection of frames is called a
knowledge base. Frame systems provide a simple method for adding new information
into – and for retrieving specific data from – the knowledge base.

Using the command (make-frame FRAME (SLOT (value FILLER ...)

...), the subcontext 22.1.4 may be defined equivalently as the following frame:

22.2.2 FRAME-THEORETIC DEFINITION OF THE CONTEXT 22.1.4

(fido
(is-a (value dog))
(friend (value felix fritz))
(brother (value zach eddie))

)

The frame name is fido. It has the slots is-a, friend, and brother. The slot is-a has the
value dog, the slot friend has the values felix and fritz, and the slot brother has the
values zach and eddie as fillers.

The original purpose of such a definition is storing information which may later
be retrieved using commands9 like (get-values FRAME SLOT). For example, the
command
(get-values ’FIDO ’FRIEND)

would retrieve the values
(FELIX FRITZ)

assuming that the frame FIDO is defined as in 22.2.2. This retrieval of slot values can
be surprisingly useful in larger knowledge bases.10

8 For this reason volume II of SCG was never written.
9 The names of the commands vary between the numerous different implementations of

frames. As an introduction, see, for example, Winston and Horn (1984), pp. 311f.
10 Frame systems usually offer a wealth of additional operations and options, such as for

removing information, inheritance, defaults, demons, and views. Despite these additional
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It is possible, however, to ontologically reinterpret the frame definition 22.2.2. In-
stead of viewing it as a [+constructive, −sense] knowledge base to be manipulated by
the commands of a programming language, we may choose to view it as an internal
subcontext within a [+constructive, +sense] approach.11 This instantiates once more
the strategy of specifying a new concept (here: agent-internal context of use) in terms
of a known, implemented formalism (here: frame theory).

The reinterpretation uses frame definitions to represent (i) the meaning of natural
language and (ii) the context of use. The goal is to realize internal matching prag-
matics by automatically embedding language frames into the context frame and by
extracting language frames from the context frame as the basis of rhetorically mean-
ingful utterances.

For example, extending the hearer context to the meaning of a new sentence such as
Fido likes Zach would require representing this information as a frame, e.g.,

(fido
(like (value Zach))

and automatically adding the part

(like (value Zach)

as a new slot to the Fido frame name of 22.2.2.
The problem is that a given piece of information, e.g., a set of propositions, may be

represented in many alternative ways in frame theory. For example, instead of making
fido the frame name in 22.2.2, we could have arranged the information equivalently
by using dog, friend, or brother as frame names. Each of these alternatives requires
that the rules for adding and retrieving information be formulated accordingly.

The original [+constructive, −sense] design of a knowledge base expects the user
to maintain a systematic structuring of the data by operating directly on the knowledge
base with the commands of a programming language. Such a structuring is necessary
to ensure proper storage and retrieval of the data.

The problem with the [+constructive, +sense] reinterpretation of frame theory for
internal matching is that it is impossible to (i) restrict the format as required for the
purposes of storage and retrieval, and at the same time (ii) accommodate the variable
structures occurring in the interpretation and production of natural language. Thus, ef-
fective storage and retrieval is prevented by the structural variety of natural language,
which leads to many alternative ways of structuring the same data (embarrassment of
riches).12

structural possibilities, or perhaps because of them, frame systems typically suffer from
uncontrolled growth combined with a lack of transparency and difficulties in checking con-
sistency.

11 This approach was explored in CoL using the FrameKit+ software by Carbonell and Joseph
(1986).

12 For this reason the frame-theoretic approach of CoL was abandoned.
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The problems encountered with the reinterpretation of model theory and frame the-
ory, respectively, lead to the conclusion that using the same formalism for defining the
meaning of language and the context of interpretation is a necessary, but not a suffi-
cient condition for realizing internal matching pragmatics. Furthermore, the attempts
at reinterpreting these traditional formalisms fail ultimately for the same reason:

Because both formalisms are originally based on a [−sense] ontology, their reinter-
pretation in the [+sense, +constructive] environment of the SLIM theory of language
results in the juxtaposition of two levels never designed to interact with each other.
The holistic presentation of the two levels as separate, closed entities may be in line
with the conceptual explanation of internal matching pragmatics (Chaps. 3–6), but
fails to suggest an abstract algorithm for embedding meaning1 into the context (hear
mode) and for extracting meaning1 out of the context (speak mode).

The underlying difficulty manifests itself as descriptive aporia in the model-
theoretic approach and as an embarrassment of riches in the frame-theoretic approach.
These problem types are symptomatic of situations in which a given formal method is
inherently unsuitable for the description of the empirical phenomena at hand.

Descriptive aporia arises in situations in which the adopted grammar system does
not suffice for the analysis of the phenomena: the alternatives all seem to be equally
bad. Embarrassment of riches arises in situations in which the phenomena to be ad-
dressed may be analyzed in several different ways within the adopted system: the
alternatives all seem to be equally good. Descriptive aporia and embarrassment of
riches may also occur simultaneously (Sects. 9.5 and 20.5).

22.3 Combining Categorial Operation and Semantic Interpretation

Unsuitable for reconstructing reference as a pattern matching between the language
and the context level inside the cognitive agent, logical formulas (model theory, SCG)
and tree structures (frame theory, CoL) raise the question of what else could be done
with them. In SCG, the formulas of predicate calculus serving as the semantic repre-
sentation of English examples are (i) small in number and (ii) based on hand-crafted
lambda reductions. When it turned out that this formal system is impossible to pro-
gram, we designed and programmed the NEWCAT system.

Its extension into the CoL software provided the automatic time-linear generation of
trees designed as the semantic representations for 421 grammatical constructions of
English (21.4.3). In an age when hundreds of tree banks were and still are constructed
all over the world, the trees generated automatically by the CoL method would surely
be of some use. Unfortunately, however, none were to be found.

Instead, we discovered additional requirements for a linguistically well-founded se-
mantic representation suitable for building a talking robot – apart from surface com-
positionality, a time-linear derivation order, and support of internal matching (SLIM).
One of these was the storage of content in a database as part of the hear mode and the
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retrieval of content from the database as part of the speak mode. This resulted in the
transition from the SLIM theory of language to Database Semantics (DBS).

DBS does not require any changes of the SLIM theory of language. It only requires
the following definitions:

22.3.1 ADDITIONAL CONSTRUCTS REQUIRED BY DBS

1. Basic items: data structure of proplets
2. Database schema: content-addressable word bank
3. Primary key for storage and retrieval: core and prn value

Let us begin by showing how the linguistic analyses of English (Chap. 17) and Ger-
man (Chap. 18) syntax can be interpreted semantically by combining (i) the catego-
rial operations and (ii) the semantic interpretations in the rules of an LA Hear gram-
mar.

Consider the syntactic analysis of the example

Field contains triangle and field contains square

shown as a content defined as set of proplets in 3.4.3 and as a DBS graph in 3.4.4. The
first derivation step is based on the rule NOM+FV defined in 17.1.4:

22.3.2 APPLICATION OF NOM+FV TO COMPLEX NOMINATIVE NP

Here the nominative valency position n′ of the verb is canceled by the cat value snp of
the initial noun. While maintaining an autonomous syntax, a semantic interpretation
based on cross-copying the core values of proplets may be added as follows:

22.3.3 HEAR MODE INTERPRETATION OF field contains (COMBINATION STEP 1)

Finally, the syntactic operation based on categorial valency buildup and canceling,
and the semantic interpretation based on cross-copying may be fused into one rule,
called Nom+FV, using pattern proplets:
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22.3.4 PATTERN MATCHING BETWEEN THE RULE AND THE CONTENT LEVEL

Note how the categorial operation used in 22.3.2 and 22.3.3 reappears at the cat level
of the rule and its language input. In addition, cross-copying shown by arrows in
22.3.3 is coded by binding the core value α to field and the core value β to con-
tain.

The second combination step is based on the rule FV+MAIN defined in 17.1.5:

22.3.5 FV+MAIN ADDING ELEMENTARY OBJECT NP (COMBINATION STEP 2)

Here the oblique valency position a′ of the verb is canceled by the cat value snp
of the second noun. While maintaining an autonomous syntax, a semantic interpre-
tation (based on cross-copying the core values of proplets) may be added as fol-
lows:

22.3.6 HEAR MODE INTERPRETATION OF field contains triangle
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Again, the syntactic operation based on categorial valency buildup and canceling, and
the semantic interpretation based on cross-copying core values, may be fused at the
rule level by using pattern proplets:

22.3.7 RECODING THE SECOND RULE OF LA E1 IN THE PROPLET FORMAT

The extension of the purely syntactic rules in Chaps. 16–18 to the format of pattern
proplets and an interpretation based on cross-copying is used to implement the seman-
tic relations of structure in natural language. They are the subject/verb, object\verb,
adverbial|verb, adnominal|noun, and conjunct−conjunct relations.

22.4 Reference as Pattern Matching

The definition of proplets as flat13 (nonrecursive) feature structures is the key to sim-
ple, efficient, computational pattern matching in DBS. Pattern matching is used (i) in
the application of LA Grammar rules to input content in the hear, think, and speak
modes and (ii) for modeling reference.

The pattern matching between the rule level and the content level is based on pat-
tern proplets at the rule level, e.g. 22.3.7. Pattern proplets are characterized by con-
taining variables as values, the domains of which may be restricted. Pattern match-
ing between the language level and the context level, in contrast, is based on (i)
the type/token relation (4.2.2) and (ii) the presence versus absence of a sur(face)
value.

The following example illustrates the pattern matching of agent-internal reference:

13 In earlier editions, proplets were structured into sub-feature structures for separating syn-
tactic and semantic properties. This was intended for better readability and did not affect
their nonrecursive nature. It had the disadvantage, however, of complicating the pattern
matching (i) between language proplets and context proplets in reference and (ii) between
the pattern proplets of rules and the content proplets serving as the input to the rules. There-
fore, the structuring into sub-feature structures has been abandoned.
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22.4.1 REFERENCE AS INTERNAL MATCHING

The values of the sur attributes are language-dependent word forms, here in German.14

The type/token distinction is not explicitly indicated, but implied by the proplets’
level. Type/type matching is also possible as a limiting case, for example, in generic
sentences like A cat likes mice.

In the speak mode, the proplets at the context level are matched by language pro-
plets; their sur values are used for realizing a modality-dependent unanalyzed external
surface. In the hear mode, the language proplets are embedded into the context.

Example 22.4.1 shows the literal use of a natural language expression. As an exam-
ple of a nonliteral use, consider the expression Put the coffee on the table, with table
intended to refer to an orange crate (5.2.1). How should such a matching between
the concepts table and orange crate be programmed? There are two possibilities, one
based on a weakened type/token relation, the other based on inferencing:

22.4.2 TWO PROPOSALS TO TREAT NONLITERAL REFERENCE

14 Depending on the natural language and the word form, there may be additional differences
between a language and a context proplet. To enable pattern matching with the context of
interpretation, such value differences are treated by defining compatibility conditions.
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According to proposal 1, the nonliteral use is treated by overextending the standard
type/token relation to include a matching between the core values table and orange
crate.

Proposal 2, in contrast, preserves the standard type/token relation and relocates the
figurative interpretation of table into contextual inferencing.15 In the speak mode,
inferencing precedes the context/language matching; in the hear mode, it follows lan-
guage/context matching. The kind of inferencing carrying the burden of a nonliteral
interpretation occurs also outside of language use (independent motivation). An ex-
ample of such nonliteral nonlanguage use is employing a screwdriver as a can opener
or a doorstop (Sect. 5.2).

An important factor for successful nonliteral use inferencing is delimiting the con-
text of interpretation. In immediate reference (4.3.1), this delimitation is provided by
the external situation, in mediated reference by the content preceding the utterance.
The following example of a nonliteral mediated reference is from a TV program (Nat-
Geo Wild 2011) on the change of seasons in a South American jungle and shows a
whole network of nonliteral uses:

22.4.3 EXAMPLE OF A NONLITERAL USE (METAPHOR)

The river awoke thirsty, waiting for the deluge.

The text preceding this example happens to coactivate “change of seasons,” which is
concordant with awake as a change from sleep to alertness, “dry season,” which is
concordant with a state of being thirsty, and “rainy season,” which is concordant with
“deluge.” The verbs wait for and awake treat the river as a sentient being.

The literature on figurative language use is divided on whether or not the nonliteral
interpretation must proceed from a literal coding. Formulating such a literal variant
for example 22.4.3 is difficult at best. A more promising approach is to apply the
inferences for constructing the analogies inherent in the figurative use directly to the
content activated at this point in the agent’s cognition.

Many words are inherently figurative, for example, the verb dovetail. Also, numer-
ous nonliteral uses in spoken and written language consist of frozen metaphors, fig-
ures of speech, and idioms. There are, however, new nonliteral uses arising every day,
which an adequate theory of natural language communication must be able to handle
on the fly.

22.5 Repercussion of the Semantic Interpretation on the DBS Syntax

Combining the categorial operation and the semantic interpretation of an LA Gram-
mar rule by using pattern proplets (22.3.4, 22.3.7) allows to semantically interpret the

15 In the terminology of Richards (1936), crate serves as the tenor and table as the vehicle.
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original “autonomous” NEWCAT syntax. As an example consider adding a phrasal
noun in postverbal position. The first step is an application of FV+Main, defined in
17.1.7 and repeated for convenience:

22.5.1 APPLYING FV+MAIN (17.1.7) IN THE NEWCAT RULE FORMAT

Because a syntax in NEWCAT format defines the sentence start as a single categorized
surface, the sentence_start-determiner combination takes place between the category
(a′v) of a verbal sentence start expression and the next word category (sn′ snp), re-
sulting in another verbal expression of category (sn′v).

The version of rule FV+Main which unifies the categorial operation and the se-
mantic interpretation (22.3.7), in contrast, defines the sentence start as a set of content
proplets. This allows adding the next word, i.e., the determiner a(n), as another proplet
to the resulting sentence start:

22.5.2 COMBINING (The girl) liked + a IN THE UNIFIED RULE FORMAT

Next let us compare the two rule formats in the combination step adding the com-
mon noun. We begin with the NEWCAT rule 17.1.8:

22.5.3 APPLYING DET+N (17.1.8) IN THE NEWCAT RULE FORMAT
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The NEWCAT format of Det+N combines the verbal sentence start of category (sn′v)
and the common noun category (sn), resulting in the category (v).

The corresponding left-associative combination using the unified rule format, in
contrast, takes place between the proplet of the determiner proplet and the common
noun proplet:

22.5.4 COMBINING (The girl liked) a + boy IN THE UNIFIED RULE FORMAT

The verb proplet is affected only insofar as the substitution value n_2 is replaced by
the core value of the common noun (simultaneous substitution). Once the relevant val-
ues of the common noun proplet have been copied into the proplets of the determiner
and the verb, it is discarded.

In summary, the NEWCAT format uses semantically motivated valency buildup
and canceling for time-linear LA Hear derivations which accept grammatically well-
formed input surfaces and reject ungrammatical ones. However, there is no derivation
of a semantic representation, i.e., a content.

The unified format based on proplets, in contrast, not only uses the categorial oper-
ation of the NEWCAT format to distinguish between grammatical and ungrammatical
input, but also derives semantic representations as sets of concatenated proplets, based
on cross-copying. The hear mode storage of these sets in the content-addressable
database of a word bank and their speak mode retrieval will be the topic of the follow-
ing chapter.
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Exercises

Section 22.1
1. Explain how an agent’s internal context of use may be viewed as a database.
2. Describe the storage and retrieval problem for modeling natural language com-

munication.
3. How does the interaction between a user and a conventional database differ from

the interaction between a speaker and a hearer?
4. Why is there no turn-taking in the user’s interaction with a conventional

database?
5. Explain the basic procedures of the speak and the hear mode in natural language

communication by using a simple example of a context.

Section 22.2
1. Is it possible to reinterpret model-theoretic semantics as a formal representation

of the context of use? What would be required for this, and how would such a
reinterpretation modify the original goal of logical semantics?

2. Expand the model structure defined in 22.2.1 by adding one more index and the
predicate sleep such that the falling asleep of Felix and Fritz and the waking up
of Zach and Eddie are being modeled. Write an evaluation of your experience.

3. Describe the basic principles of frame theory and compare it with model theory.
4. Is it possible to reinterpret frame-theoretic semantics as a computational repre-

sentation of the context of use? How would such a reinterpretation modify the
original purpose of frame-theoretic semantics?

5. Why does the use of a frame-theoretic semantics within the SLIM theory of lan-
guage necessitate a change of the original ontology?

6. Is the use of a uniform formalism for representing the levels of (i) the language
meaning1 and (ii) the context of interpretation a necessary or a sufficient condi-
tion for the successful definition of an internal matching pragmatics?

7. Is it a good idea to construct a [+sense] system by combining two instantiations
of a [−sense] system? What kinds of problems are likely to occur?

8. Why is the format of 21.4.3 unsuitable for the storage and retrieval task of natural
language communication.

Section 22.3
1. What are the requirements on a semantics in addition to being suitable for a

modeling of reference as an agent-internal pattern matching?
2. What is the difference between the variables NP and NP′?
3. Explain the difference between the format of uninterpreted NEWCAT rules (e.g.,

22.3.2, 22.3.5) and the format of unified DBS rules (e.g., 22.3.4, 22.3.7).
4. How are lexical meanings like field, triangle, or contain coded in DBS?
5. How are the lexical meanings composed into propositions?
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6. How are propositions composed into complex content?
7. How are semantic relations between proplets coded by the unified DBS rules in

the hear mode?

Section 22.4
1. Does the definition of content as a(n order-free) set of proplets help or hinder

pattern matching between the language and the context level (reference)?
2. How does pattern matching between the language and the context level differ

from the pattern matching between a rule pattern and a content?
3. Explain two ways for handling nonliteral use.
4. Why are the inferences for interpreting nonliteral uses of natural language ex-

pressions independently motivated?

Section 22.5
1. How does a sentence start in the unified rule format differ from a sentence start

in the NEWCAT format?
2. How does this difference affect the role of the verb in time-linear addition of a

postverbal phrasal noun?
3. Does a similar difference occur also in the combination of a preverbal phrasal

noun with the finite verb?
4. What is the database aspect in the cycle of natural language communication and

why is the unified rule format essential for this aspect?
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This chapter continues the description of DBS constructs. Section 23.1 shows the
uniform coding of content at the elementary, the phrasal, and the clausal levels of
grammatical complexity as sets of proplets. Section 23.2 uses the order-free nature
of proplets for their storage in a content-addressable word bank and shows the se-
lective activation of content by means of navigating along the semantic relations
between proplets. Section 23.3 introduces the graphical representation of seman-
tic relations in DBS, and compares paratactic and hypotactic clausal constructions.
Section 23.4 discusses the handling of alternative surfaces for a given content. Sec-
tion 23.5 presents the ten SLIM states of cognition as different constellations of a DBS
robot.

23.1 Coding Content at the Elementary, Phrasal, and Clausal Levels

Coding interproplet relations solely by means of proplet-internal values, defined as
addresses and implemented as pointers, works for all semantic relations of natural lan-
guage. In contradistinction to the semantic relations of meaning such as synonymy, the
semantic relations of structure are the functor-argument relations of subject/predicate,
object\predicate, adnominal|noun, adverbial|verb, and the coordination relation of
conjunct−conjunct, at the elementary, the phrasal, and the clausal level.

23.1.1 SEMANTIC RELATIONS OF STRUCTURE AT THE ELEMENTARY LEVEL

Yesterday Mary bought a book and a cookie.

⎡
⎢⎢⎢⎢⎣

adj: yesterday
cat: adv
sem: pad
mdd: buy
prn: 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
fnc: buy
prn: 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ decl
sem: past
arg: Mary book
mdr: yesterday
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: book &
cat: snp
sem: def sg
fnc: buy
nc: cookie
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: cookie
cat: snp
sem: def sg
fnc:
pc: book
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

The adverbial use of the adj proplet yesterday is specified by the adv value of the cat
attribute, while the modified is specified by the mdd value buy.
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The noun proplet Mary is specified as an snp (singular noun phrase) in the cat
attribute and as nm (name), f (feminine1), and sg (singular) in the sem attribute. The
relation to the verb is specified by the value buy of the fnc (functor) attribute.

The form bought of the verb proplet buy is indicated by the value past of the cat
attribute. The first value of the arg attribute Mary is the subject, while the second
value book is the direct object. The mdr (modifier) slot contains yesterday.

The core value of the noun book is marked as an initial conjunct by &. The next
conjunct is specified as the value cookie of the nc (next conjunct) attribute, just
as book is specified as the previous conjunct by the value of the pc attribute of
cookie.

The five proplets characterizing the content coded by the English surface are held
together by the common prn value 7. The semantic relations Mary/buy (subject/
predicate) and book\buy (object\predicate) are obligatory, while the relations yester-
day|buy (adverbial|verb) and book−cookie (conjunct−conjunct) are optional. The
adverbial and the conjuncts are included because they are themselves elemen-
tary, though they create phrasal structures by being concatenated with their modi-
fied.

The modifiers creating phrasal relations at the content level are optional. They are
integrated into the attribute-value structure of the elementary content, as in the fol-
lowing example:

23.1.2 SEMANTIC RELATIONS OF STRUCTURE AT THE PHRASAL LEVEL

The young girl has bought a little book and a large cookie.
⎡
⎢⎢⎢⎢⎢⎢⎣

noun: girl
cat: snp
sem: def f sg
fnc: buy
mdr: young
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: young
cat: adn
sem: pad
mdd: girl
prn: 8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ decl
sem: perf
arg: Mary book
mdr:
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: book
cat: snp
sem: def sg
fnc: buy
mdr: little
nc: cookieprn: 8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: little
cat: adn
sem: pad
mdd: book
prn: 8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

noun: cookie
cat: snp
sem: def sg
fnc: buy
mdr: large
pc: book
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: large
cat: adn
sem: pad
mdd: cookie
prn: 8

⎤
⎥⎥⎥⎥⎦

1 The gender specification in the singular is needed for agreement with a possible coreferen-
tial pronoun.
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The elementary noun girl is made phrasal by adding the modifier young using the
respective mdr and mdd attributes, and similarly for book and cookie. Thereby the
elementary relations of 23.1.1 remain unaffected.2

Upscaling to clausal relations is based on sentential subjects, objects, adnominals,
and adverbials, as well as extrapropositional coordination. Consider the following
example with a sentential subject:

23.1.3 SEMANTIC RELATIONS OF STRUCTURE AT THE CLAUSAL LEVEL

That Bill bought a book surprised Mary.
⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Bill
cat: snp
sem: nm m sg
fnc: buy
mdr:
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ v
sem: past
arg: Bill book
fnc: (surprise 10)
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

sur: book
noun: book
cat: snp
sem: indef sg
fnc: buyprn: 9

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: surprise
cat: #n′ #a′ decl
sem: past
arg: (buy 9) Mary
mdr:
prn: 10

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
fnc: surprise
mdr:
prn: 10

⎤
⎥⎥⎥⎥⎥⎥⎦

The relation between the verb buy of the subject sentence and the matrix verb surprise
is coded by the additional fnc attribute with the address value (surprise 10) of buy and
the initial arg value (buy 9) of surprise. Relations which require additional attributes,
here fnc of buy, and elementary relations coded as extrapropositional addresses, here
(buy 9), are called opaque, in contradistinction to the relations in 23.1.1 and 23.1.2,
which are transparent.

23.2 Storing Content in a Word Bank

The contents coded in 23.1.1, 23.1.2, and 23.1.3 are shown in an order corresponding
to that of the surface. However, because the interproplet relations are coded solely by
means addresses, the proplets are in fact order-free. This allows their storage in a new
kind of content-addressable database, called a word bank (NLC, CLaTR):

2 The function words the, has, a, and a in the surface of 23.1.2 are absorbed into the as-
sociated content word proplets and represented as certain values such as def(inite). In as
much as the girl, for example, is regarded as phrasal at the surface level, but as elemen-
tary at the corresponding content level, the notion ‘phrasal’ is used differently at the two
levels.
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23.2.1 A WORD BANK CONTAINING CONCATENATED PROPLETS

PROPLET TOKENS NOW FRONT PROPLET TYPES⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Bill
cat: snp
sem: nm m sg
fnc: buy
mdr:
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Bill
cat: snp
sem: nm m sg
. . .
prn:

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: book &
cat: snp
sem: indef sg
fnc: buy
nc: cookie
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

noun: book
cat: snp
sem: indef sg
fnc: buy
mdr: little
nc: cookie
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

sur: book
noun: book
cat: snp
sem: indef sg
fnc: buy
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

noun: book
cat: snp
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ decl
sem: past
arg: Mary book
mdr: yesterday
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ decl
sem: perf
arg: Mary book
mdr: yesterday
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ v
sem: past
arg: Bill book
fnc: (surprise 10)
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: buy
cat: n′ a′ v
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: cookie
cat: snp
sem: def sg
fnc: buy
pc: book
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

noun: cookie
cat: snp
sem: def sg
fnc: buy
mdr: large
pc: book
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

noun: cookie
cat: snp
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: girl
cat: snp
sem: def f sg
fnc: buy
mdr: young
prn: 8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: girl
cat: snp
sem: f sg
. . .
prn:

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: large
cat: adn
sem: pad
mdd: cookie
prn: 8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

adj: large
cat: adn
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: little
cat: adn
sem: pad
mdd: book
prn: 8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

adj: little
cat: adn
. . .
prn:

⎤
⎥⎥⎦



23.2 Storing Content in a Word Bank 459

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: surprise
cat: #n′ #a′ decl
sem: past
arg: (buy 9) Mary
mdr:
prn: 10

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

verb: surprise
cat: n′ a′ v
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
fnc: buy
prn: 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
fnc: surprise
mdr:
prn: 10

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
. . .
prn:

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: yesterday
cat: adv
sem: pad
mdd: buy
prn: 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

adj: yesterday
cat: adv
. . .
prn:

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

adj: young
cat: adn
sem: pad
mdd: girl
prn: 8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

adj: young
cat: adnv
. . .
prn:

⎤
⎥⎥⎦

The proplet types in the column on the right are like lexical entries. They are ordered
alphabetically according to their core value, i.e., the value of the core attribute noun,
verb, or adj. A proplet type may also contain values for other lexical properties, such
as the cat or sem values, or have attributes which have no value, e.g. prn.

Each proplet type is preceded by an open number of proplet tokens, thus forming a
token line. Proplets in the same token line have the same core value. Incoming proplets
are stored at the now front, resulting in the temporal structure of sediment.

Proplet tokens belonging to the same proposition are held together across token
lines by a common proposition number (prn value). The prn values reflect the tempo-
ral order of arrival. The attributes concatenating proplets with semantic relations of
structure, i.e., fnc, arg, mdr, mdd, nc, and pc, are called continuation attributes.

The structure of a word bank resembles a classic network database (Elmasri and
Navathe 2010). A network database defines a 1:n relation between two kinds of
records, the owner records and the member records. However, instead of records
(1.1.1) a word bank uses the equivalent data structure of proplets. In the above ex-
ample, the proplet types are the owners and the proplet tokens are the members.
The primary key for the storage and retrieval of a proplet is its core and its prn
value.

A word bank goes beyond a classic, i.e., record-based, database because it defines
the semantic relations of functor-argument and coordination between proplets. These
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relations are the basis for a kind of operation which a conventional database, e.g.,
an RDBMS, does not provide, namely an autonomous time-linear navigation through
the concatenated propositions in the word bank.

A navigation through the content 23.1.1 of Yesterday Mary bought a book and a
cookie. in the word bank 23.2.1 may be represented graphically as follows:

23.2.2 NAVIGATING THROUGH THE CONTENT OF THE WORD BANK 23.2.1

Using the continuation value yesterday and the prn value of the buy proplet as an
address, navigation step 1 goes from buy to yesterday. Similarly, navigation steps 2_3
go from yesterday to buy and from buy to Mary, 4 from Mary to buy, 5 from buy to
book, 6 from book to cookie, and 7_8 from cookie back to buy.

Navigating along the semantic relations between proplets in a word bank may be
used for (i) the selective activation of content and (ii) the realization of the activated
content in language. Language surfaces are always realized from the core value of
the goal proplet of a navigation step, as indicated by the vertical dotted lines. The
realization of a surface may require more than one navigation step, e.g., the 2_3 nav-
igation realizing Mary, and a navigation step may realize more than one surface, e.g.,
the navigation step 6 realizing and_a_cookie.

The navigation through a word bank content is driven by an LA Think grammar.
Consider the rule application performing the navigation step from buy to Mary:



23.3 Representing the Semantic Relations of Structure Graphically 461

23.2.3 THE LA THINK RULE V+N NAVIGATING FROM buy TO Mary

V+N {2 N+V 3 N+A 4 P NC}⎡
⎣

verb: α

arg: #X β Y
prn: K

⎤
⎦

⎡
⎣

noun: β

fnc: α

prn: K

⎤
⎦ ⇒

⎡
⎣

verb: α

arg: #X # β Y
prn: K

⎤
⎦

⎡
⎣

noun: β

fnc: α

prn: K

⎤
⎦ lex(noun)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: buy
cat: #n’ #a’ decl
sem: pres
arg: Mary book
. . .
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: buy
cat: #n’ #a’ decl
sem: past
arg: #Mary book
. . .
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
noun: Mary
cat: snp
sem: nm f sg
fnc: buy
. . .
prn: 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mary

The first rule pattern matches the input proplet. Its variables occur also in the second
proplet. Binding the variable β to the continuation value Mary and the variable K to the
prn value 7 of the input proplet buy allows navigation to (retrieval of) the goal proplet
Mary. To prevent a relapse or a loop, the continuation value used for the navigation is
#-marked in the output, here the arg value #Mary in the buy proplet. As an LA Speak
option, the function lex(noun) may realize the core value of the goal proplet, here
Mary.

23.3 Representing the Semantic Relations of Structure Graphically

While the proplet-based representations 23.2.1 and 23.2.2 show the database aspect
of a content precisely and may be produced automatically, they are difficult to read.
Therefore, we developed a graphical analysis which consists of four different views
on a DBS content. Consider the following example showing the graphical analysis of
the content 23.1.1 (elementary grammatical complexity):

23.3.1 GRAPHICAL ANALYSIS OF Yesterday Mary bought a book and a cookie.
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The lines distinguishing the relations of subject/predicate, object\predicate, “|” for
adnominal_modifier|noun and adverbial_modifier|verb, and “−” for conjunct−con-
junct are used in the graph. The idea of semantically interpreting different graph-
ical constructs, here different kinds of lines, goes back to Frege’s (1889) Begriff-
sschrift, though his graphical representation of predicate calculus is more compli-
cated.

The lines of the (i) semantic relations graph (SRG) connect the core values of the
proplets in 23.1.1. The same lines in (ii) the signature connect the core attributes,
represented by N (noun), V (verb), and A (adj). The (iii) numbered arcs graph (NAG)
shows the navigation through the SRG during content activation and language pro-
duction. The numbers in (iv) the surface realization show which surfaces are realized
form the goal node of which numbered arc.

This kind of analysis works also for the phrasal construction 23.1.2:

23.3.2 The young girl has bought a little book and a large cookie.

DBS graph analyses like 23.3.1 and 23.3.2 do not use any nonterminal nodes. In-
stead, all semantic relations are binary, i.e., defined directly between two proplets
in terms of addresses implemented as pointers. This is in contradistinction to sys-
tems based on possible substitutions, such as phrase structure grammar: a rewrite
rule like S → NP VP cannot be defined without a nonterminal node, here S (8.4.1,
8.4.2).

The direct definition of relations between content proplets in DBS holds also for
the clausal constructions of natural language. Clausal functor-arguments (hypotactic)
are the subject sentence, the object sentence, the adnominal modifier sentence (aka
relative clause), and the adverbial modifier sentence. Clausal coordination (parat-
actic) is the concatenation of propositions. Clausal relations are defined between
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the verb proplets of two propositions. This is shown by the graphical analysis of
the subject sentence 23.1.3, which is an extrapropositional intrasentential functor-
argument:

23.3.3 HYPOTACTIC: That Bill bought a book surprised Mary. (ACTIVE VOICE)

As in all subclause constructions of natural language, the semantic relation between
the subclause and the main clause is opaque: even though the function of the subclause
is that of a subject, as shown by the “/” line between buy and surprise, the node rep-
resenting the subclause is V. The double function of buy as the verb of the subclause
and the subject of the main clause is handled at the proplet level (23.1.3) with the ad-
ditional (non-lexical) fnc attribute, which is normally (lexically) reserved for nouns.
The other opaque property of this construction is the use of the verbal address (buy 9)
as the first argument of surprise.

Finally consider an extrasentential extrapropositional coordination.

23.3.4 PARATACTIC: Peter leaves the house. Then Peter crosses the street.

As in clausal relations in general, the coordination is defined between the verb pro-
plets of the conjuncts. In contradistinction to extrapropositional (clausal) functor-
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arguments, which are always intrasentential, extrapropositional coordination may be
intra- or extrasentential.

23.4 Paraphrase and the Universalist/Relativist Dichotomy

For different rhetorical purposes, a propositional content may have various surfaces
which are semantically equivalent, i.e., paraphrases (4.4.6). In the hear mode, several
different surfaces may be mapped into the same propositional content (set of proplets).
In the speak mode, a propositional content may be mapped into several different sur-
faces. Though applied here to alternative surfaces in a given language (English), the
following considerations apply also to the coding of a given propositional content in
different languages (translation).

In DBS, alternative surfaces for the same content may have two different causes.
One is an alternative navigation through a given SRG. The other is the possibility of
different SRGs being equivalent.

The first cause is illustrated by the NAG of the following example of a hypotactic
construction, which uses the same SRG and signature as 23.3.3, but realizes a different
surface based on a different navigation order:

23.4.1 HYPOTACTIC: Mary was surprised that Bill bought a book. (PASSIVE)

The different word order is based on changing from the active voice in 23.3.3 to the
passive voice. This is shown in the NAG by first traversing the object Mary. Also, the
verb form surprised is changed to was_surprised (cf. the surface realization).

As another example consider an alternative surface based on the extrapropositional
coordination 23.3.4. Here the different word order is based on changing from a for-
ward to a backward navigation:
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23.4.2 PARATACTIC: Peter crosses the street. Before that he leaves the house.

The alternative navigations through the same SRG, here 23.3.4 (forward navigation)
and 23.4.2 (backward navigation), are semantically equivalent because the SRG is an
abstract representation of the content defined as a set of proplets.

Now let us turn to the second possible cause of paraphrase in DBS, i.e., the pos-
sibility of different SRGs being equivalent. The following example changes the sub-
clause of 23.3.3 into the main clause, and the main clause into an adverbial sub-
clause:3

23.4.3 Bill bought a book, which surprised Mary.

Leaving aspects of foregrounding aside, this construction has the same meaning as
that in 23.3.3, despite the difference between the semantic constructions.

In addition, a paraphrase based on an alternative navigation may be constructed,
though it is somewhat laborious:

Bill bought a book, by which Mary was surprised

3 For the corresponding treatment of adnominal subclauses, aka relative clauses, see CLaTR,
Sect. 9.3.
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The difference between the semantic relations of 23.3.3 and 23.4.1 on the one hand
and of 23.3.3 and 23.4.3 on the other is reflected at the proplet level. Compare the
proplet set 23.1.3 with the following content:

23.4.4 REPRESENTATION OF 23.4.3 AS A SET OF PROPLETS

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Bill
cat: snp
sem: nm m sg
fnc: buy
mdr:
prn: 76

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: buy
cat: #n′ #a′ decl
sem: past
arg: Bill book
mdr: (surprise 77)
prn: 76

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

noun: book
cat: snp
sem: indef sg
fnc: buy
prn: 76

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

verb: surprise
cat: #n′’#a′ v
sem: past
arg: # Mary
mdd: (buy 76)
prn: 77

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

noun: Mary
cat: snp
sem: nm f sg
fnc: surprise
mdr:
prn: 77

⎤
⎥⎥⎥⎥⎥⎥⎦

The constructions 23.3.3, 23.4.1, and 23.4.3 have the following counterparts in Ger-
man, showing substantially different word orders (Sect. 18.3):

23.3.3: Dass Bill ein Buch kaufte, überraschte Maria.
23.4.1: Maria war überrascht, dass Bill ein Buch kaufte.
23.4.3: Bill kaufte ein Buch, was Maria überraschte.

The alternative word orders of the English examples and their German translations are
treated solely by alternative navigation orders through the same signature.

Next consider an SRG supporting a hypotactic paraphrase of the paratactic coordi-
nation 23.3.4 by turning the first conjunct into an adverbial clause:

23.4.5 HYPOTACTIC: After Peter leaves the house, he crosses the street.
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Like the previous hypotactic examples, this construction is opaque because the modi-
fier, i.e., the adverbial clause After Peter leaves the house, is represented by a V rather
than an A. The coreferential interpretation of the pronoun he is represented by the
address (Peter) pointing at the antecedent.

Basing some paraphrases on different SRGs, here 23.3.4/23.4.2 and 23.4.5, may
be related to the choice between linguistic universalism (represented by nativism)
and linguistic relativism (represented by the Humboldt-Sapir-Whorf hypothesis). Uni-
versalism would presumably base the equivalences on deriving all the paraphrases
from a single underlying SRG, while a moderate relativism may derive some para-
phrases from different SRGs as long as the SRGs may be inferred to be equiva-
lent.

For a computational reconstruction of the speak and the hear mode, this choice has
practical consequences. A single, universal, underlying SRG establishes a “perma-
nent” equivalence between the alternative surfaces, but requires heavy inferencing to
relate the surface and the content every time one of the paraphrases is produced or
interpreted. A construction-dependent representation (as shown in 23.3.3/23.4.1 and
23.4.3 as well as 23.3.4/23.4.2 and 23.4.5), in contrast, provides a greatly simplified
mapping between the surface and the content with the possibility of inferring equiva-
lence when needed.

23.5 The Ten SLIM States of Cognition

In this section, we turn from the grammatical analysis of the speak and the hear mode
to language communication. This requires the additional distinctions between nonlan-
guage recognition and action, and between immediate and mediated reference. Using
the component structure 22.1.1, the analysis results in the ten SLIM states of cognition.
They represent alternative functional flows in the agent’s cognition, with ❉ indicating
the activation point of a constellation.

23.5.1 SLIM 1: RECOGNITION (contextual)
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SLIM 1 represents a cognitive agent observing its external environment. Contextual
parameter values are matched with concept types provided by memory, resulting in
proplets with concept tokens as core values, which are combined into concatenated
propositions (Sects. 3.3, 3.4). The activation is indicated by the circular arrow on the
left. When the proplets are read into the word bank, the sequence of their storage
mirrors the sequence of their recognition and concatenation (represented by the right-
hand circular arrow).

23.5.2 SLIM 2: ACTION (contextual)

SLIM 2 represents a cognitive agent acting in its external environment using stored
blueprints or freshly derived inferences. When these are traversed by LA Think (right-
hand circular arrow), copies are passed to the agent’s action components to be realized
(left-hand circular arrow).

23.5.3 SLIM 3: INFERENCE (contextual)

In SLIM 3, LA Think navigates through the word bank without resulting action, as in
free association, dreaming, and explorative inferencing. SLIM 1, SLIM 2, and SLIM 3
function also in cognitive agents without language,4 for example a dog.

4 In DBS, recognition, reasoning, and action do not require a language ability. However,
natural agents without language must be capable of nonlanguage communication at least to
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23.5.4 SLIM 4: INTERPRETATION OF LANGUAGE (mediated reference)

SLIM 4 represents a hearer interpreting natural language without accompanying
nonlanguage recognition (circular upper left arrow), as when reading a letter (5.3.4).
SLIM 4 is powered by an LA Hear grammar which connects the incoming proplets
(24.1.1) resulting from lexical lookup. When the proplets are read into the word bank,
the sequence of their storage mirrors the sequence of their recognition and concatena-
tion (represented by the circular lower arrow).

23.5.5 SLIM 5: PRODUCTION OF LANGUAGE (mediated reference)

SLIM 5 represents a speaker reporting content stored in memory or derived by
inferences without using current recognition. SLIM 5 is powered by LA Think’s
navigation through the word bank. The proplets traversed are matched by corre-
sponding language proplets. These are input to an LA Grammar for language pro-
duction which provides language-specific word order, lexicalization including func-
tion word precipitation, inflection, etc. (represented by the circular upper right ar-
row).

the degree that reproduction is ensured.
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23.5.6 SLIM 6: LANGUAGE-CONTROLLED ACTION (immediate reference)

The constellation of SLIM 6 describes an agent interpreting an order, a request, or
an instruction (language recognition) and obeying it (nonlanguage action). As such,
SLIM 6 is a combination of language-based SLIM 4 and contextual SLIM 2. An exam-
ple would be an instruction like Peel the potatoes and put them in boiling water. Note
that SLIM 4 and SLIM 5 are instances of mediated reference, while SLIM 6 to SLIM 9
are instances of immediate reference (4.3.1).

23.5.7 SLIM 7: COMMENTED RECOGNITION (immediate reference)

The constellation of SLIM 7 describes an agent observing a current event and report-
ing it. SLIM 7 is a combination of contextual SLIM 1 and language-based SLIM 5. The
procedure is driven by contextual recognition (circular arrow at lower left). When the
proplets are read into the word bank, the sequence of their storage mirrors the se-
quence of their recognition and concatenation (represented by the circular arrow at
lower right). The incoming context proplets are matched by language proplets, and
turned into a sequence of connected proplets (circular arrow at upper right). The sur-
faces of these are passed to the action component for realization. An example is life
reporting as in Now a man with a violin case is showing up.
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23.5.8 SLIM 8: LANGUAGE-CONTROLLED RECOGNITION (immediate reference)

SLIM 8 is a constellation in which incoming language directs the agent’s recognition.
An example is an instruction like In the upper drawer you will find a silver key. SLIM 8
is a combination of language-based SLIM 4 and contextual SLIM 1. It is driven by lan-
guage recognition (circular arrow in upper left). Language interpretation is matched
by context proplets (circular arrow in lower right) which are used to control the agent’s
recognition (circular arrow in lower left).

23.5.9 SLIM 9: COMMENTED ACTION (immediate reference)

SLIM 9 is a constellation in which self-performed nonlanguage action is reported di-
rectly. An example is a comment like I now operate the lever of the door lock and
open it. SLIM 9 is powered by the autonomous navigation through the propositions
of the contextual word bank (circular arrow at lower right). This navigation is simul-
taneously put into contextual action and into words. SLIM 9 may be analyzed as a
combination of language-based SLIM 5 and contextual SLIM 2.
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23.5.10 SLIM 10: COGNITIVE STILLSTAND

While in natural cognitive agents there is always a minimum of cognitive activity
(SLIM 3) as long as they are alive and well, in artificial agents the time-linear naviga-
tion may be halted without jeopardizing the database contents. For this reason, SLIM

10 is included as a legitimate cognitive state (limiting case).
The typology of SLIM 1 to SLIM 10 is basic because it systematically represents

constellations of the SLIM machine which are structurally obvious. It is real because
each of the ten constellations is supported by natural examples. It is also useful be-
cause it allows us to define important theoretical notions as simple variations of the
same well-motivated structure.

More specifically, context-based cognition is represented by SLIM 1 to SLIM 3, and
language-based cognition is represented by SLIM 4 and SLIM 5, while simultaneous
context- and language-based cognition is represented by SLIM 6 to SLIM 9. Context-
based cognition distinguishes between recognition (SLIM 1), action (SLIM 2), and in-
ferencing (SLIM 3). Language-based cognition distinguishes between the hear mode
(SLIM 4, SLIM 6, SLIM 8), and the speak mode (SLIM 5, SLIM 7, SLIM 9). Mediated
reference (SLIM 4, SLIM 5) is distinguished from immediate reference (SLIM 6 to
SLIM 9). In immediate reference, language-based control (SLIM 6, SLIM 8) is distin-
guished from context-based commenting (SLIM 7, SLIM 9).
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Exercises

Section 23.1
1. Give an example of an elementary and a phrasal noun, adj, and verb.
2. Name the clausal relations of natural language.
3. Why are the clausal relations opaque?
4. Explain the relation between the sentential subject and the matrix verb in 23.1.3.

Describe the relevant attributes and values.
5. Define a corresponding proplet set for a sentential object construction.
6. Define a corresponding proplet set for a sentential adverb construction.

Section 23.2
1. Compare a classic network database and a word bank.
2. What is the primary key for storage and retrieval in a word bank?
3. What is the difference between an owner proplet and a member proplet?
4. What is the storage location for a new proplet?
5. Explain the core and the continuation attributes in a proplet.
6. Why are the proplets of a proposition stored in different token lines?
7. How does a content navigation use the retrieval mechanism of the word bank?

Section 23.3
1. Explain how the semantic relations subject-predicate, object-predicate, adnom-

inal-noun, adverbial-verb, and conjunct-conjunct are represented in an SRG.
2. Compare an SRG and a corresponding signature.
3. How are coreferential pronouns represented in a signature?
4. Are NAGs defined for the speak mode or for the hear mode?
5. Explain surface realizations in which a surface requires more than one traversal

step and in which one traversal step realizes more than one surface.
6. How are paratactic and hypotactic constructions represented in an SRG?
7. Explain why systems based on the principle of possible substitution cannot define

relations between content words directly.

Section 23.4
1. Explain the two reasons why a propositional content may have alternative sur-

faces.
2. In what sense is a mapping between alternative surfaces and a propositional con-

tent in the same language analogous to a mapping between a given content and
equivalent surfaces in different languages?

3. Describe the tasks of the mapping between a content and a surface in the speak
and in the hear mode.

4. What are the respective advantages and disadvantages of postulating a univer-
sal representation of a propositional content, within a language and across lan-
guages.

5. What relations allow the construction of contents which are unlimited in size?
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Section 23.5
1. Describe the ten SLIM states of cognition.
2. What are the three possible activation points of a SLIM machine?
3. Compare the SLIM states of language-based and context-based cognition.
4. Compare the SLIM states of immediate and mediated reference.
5. How do the speak and the hear mode differ in a SLIM machine?
6. Why is immediate reference a special case of mediated reference?



24. Conclusion

This chapter returns to the robot CURIOUS introduced in Chap. 3 and shows how
the software constructs designed above work in this basic cognitive machine. Sec-
tion 24.1 characterizes the hear mode schematically with the interpretation of a declar-
ative sentence. Section 24.2 shows the production of the example in the speak mode
and illustrates the mechanism of natural language communication in its most basic
form. Section 24.3 extends this mechanism to the querying and query answering in
natural language, using the database schema of a word bank and the data structure
of pattern proplets. Section 24.4 explains the need for an autonomous control based
on the principle of maintaining the agent’s balance vis-à-vis constantly changing in-
ternal and external environments. Section 24.5 discusses the dependence of a con-
tent’s coherence on whether DBS is implemented on a standard computer or as a
robot.

24.1 Hear Mode

Let us summarize the cycle of natural language communication by showing the cogni-
tive agent’s speak and hear modes with the robot CURIOUS, using the simple examples
3.4.2–3.4.4. The environment of CURIOUS is a flat floor divided into fields containing
colored geometric objects of different sizes, like a big blue square or a small black
triangle. The hardware of CURIOUS consists of a video camera moving on the ceiling
to visit and analyze one field after another (3.5.2).

CURIOUS differs from a standard computer in that the interfaces of the latter are es-
sentially for transporting alphanumerical characters in and out. CURIOUS, in contrast,
provides the core values field, contain, triangle, and square with procedural definitions
based on matching concept types on raw data (bitmap outlines, 3.2.3).

Initially, the cognitive operations keeping track of CURIOUS’s task environment
do not involve language. They may be extended to language, however, by providing
(i) the proplets’ sur attributes with suitable values as well as (ii) LA Grammars for the
interpretation and production of modality-dependent unanalyzed external surfaces.

The following extension to language begins with the hear mode in order to fill the
agent’s word bank for subsequent speak mode productions. For simplicity, the fol-
lowing analysis shows only the first sentence of the example. The complete example,
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including the handling of extrapropositional coordination, is shown in 3.4.3 as a set
of proplets. The spatio-temporal specifications of the original example are omitted.

24.1.1 HEAR MODE INTERPRETATION OF Field contains triangle. . .

The time-linear perception of the external word form surfaces triggers the agent’s
surface recognition. The recognized surfaces are used for lexical lookup, provided by
automatic word form recognition. It maps each recognized surface into a proplet.

Automatic word form recognition is incrementally intertwined with the syntactic-
semantic parsing provided by the agent’s LA Hear grammar: the time-linear derivation
looks up the current next word, combines it with the current sentence start into a
new sentence start (left-associative combination), turns the new sentence start into
the current sentence start, does lexical lookup of a new next word, and continues
in this way until no next word is available or the derivation hits an ungrammatical
continuation.

The syntactic-semantic interpretation in 24.1.1 is simplified in that it shows the
buildup of content only by means of cross-copying, but omits the categorial opera-
tions. The resulting proplets are suitable for storage in the agent’s word bank.

24.2 Speak Mode

Having shown how a sample sequence of natural language sentences is automatically
read into the word bank, we turn next to natural language production. This task has to
solve the following problems:

1. conceptualization (what to say)
2. coherence (how to say it, macro structure)
3. cohesion (how to say it, micro structure)
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Important aspects of cohesion are:

a. serialization (how to order the content)
b. lexicalization (which words to choose)

Recent and current systems of natural language generation (NLG) come in three kinds
of architecture: (i) pipeline (McDonald 1983; McKeown 1985; Reiter et al. 1997),
(ii) interactive (Hovy 1988; Reithinger 1992), and (iii) integrated (Appelt 1985).
Pipeline systems move in only one direction, from a complete selection of content
via planning to realization. Interactive systems provide interfaces for a bidirectional
decision procedure regarding the choice of topic, sentence content, and sentence struc-
ture. Integrated systems do not use the distinction between ‘what to say’ and ‘how to
say it’, but treat generation instead in terms of a planning procedure based on a single
hierarchy involving both language knowledge and contextual knowledge (Busemann
2000).

The Database Semantics approach to language production differs from these in that
it does not use any planning hierarchy. Instead, conceptualization is based on a gen-
eral notion of thought, implemented as (i) a navigation along the semantic relations
between proplets, complemented by (ii) inferencing. The navigation provides essen-
tial aspects of cohesion, namely the basic serialization of the language expressions
and some aspects of lexicalization. In this way, the traditional distinction between
content (what to say) and form (how to say it) is minimized. Furthermore, coher-
ence is achieved by feeding the word bank with coherent contextual information
(Sect. 24.5).

The structural basis for the navigation through a complex propositional content
are the core and the continuation values of the order-free proplets stored in a word
bank:

24.2.1 STORING THE PROPOSITIONS DERIVED IN 24.1.1 IN A WORD BANK

PROPLET TOKENS NOW FRONT PROPLET TYPES⎡
⎢⎢⎢⎢⎣

verb: contain
arg:field triangle
nc: (contain 24)
pc:
prn: 23

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: contain
arg:field square
nc:
pc: (contain 23)
prn: 24

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

verb: contain
arg:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎦

⎡
⎣

noun: field
fnc: contain
prn: 23

⎤
⎦

⎡
⎣

noun: field
fnc: contain
prn: 24

⎤
⎦

⎡
⎣

noun: field
fnc::
prn:

⎤
⎦

⎡
⎣

noun: square
fnc: contain
prn: 24

⎤
⎦

⎡
⎣

noun: square
fnc:
prn:

⎤
⎦

⎡
⎣

noun: triangle
fnc: contain
prn: 23

⎤
⎦

⎡
⎣

arg: triangle
fnc:
prn:

⎤
⎦
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By using the continuation value of a present proplet as a core value, the navigation
utilizes the retrieval mechanism of the word bank for finding a next proplet, as shown
by the following example:

24.2.2 SPEAK MODE PRODUCTION OF field contains triangle

Compared to the NAG navigations in Sects. 23.3–23.5, the navigation is simplified in
that it is more direct. Instead of beginning with the verb, it takes the noun proplet field
with the prn value 23 as its start proplet.

Access to a next proplet may be external using the address or internal using the
implementation of the address as a pointer. Based on the start proplet’s continuation
feature, here [fnc: contain], external access looks for the token line of contain and
proceeds from the owner proplet to the member proplet with the prn value 23. The
proplet contain has the continuation feature [arg: field triangle]. The first value, field,
confirms the previous navigation. The second value triangle is the new ‘next’ proplet.
It is found by going to the token line of triangle and proceeding from the owner proplet
to the member proplet with the prn value 23.

The arrows in 24.2.2 show internal access based on pointers instead of going via
owner proplet and prn value. In either way, proposition 23 may be traversed com-
pletely. The content is realized agent-externally as a sequence of language surfaces
which are derived from the core values and realized in the time-linear order of the
navigation. The navigation may be continued extrapropositionally to another propo-
sition, based on the value of the verb’s nc (next conjunct) value (not shown, but
see 24.2.1).

Natural language communication between a speaker and a hearer is successful if
the content coded into language by the speaker is reconstructed equivalently by the
hearer. Using simplified variants of 24.1.1 (hear mode) and 24.2.2 (speak mode), the
transfer of information from the speaker to the hearer may be shown as follows:
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24.2.3 TRANSFER OF INFORMATION FROM THE SPEAKER TO THE HEARER

The speaker’s navigation (24.2.2) serves as the conceptualization (what to say) and
as the basic serialization (how to say it) of natural language production. The hearer’s
interpretation (24.1.1) consists in deriving a corresponding set of proplets. The time-
linear order of the sign induced by the speaker’s navigation is eliminated in the hear
mode, allowing storage of the proplets in accordance with the database schema of
a word bank. When the agent switches from the hear mode to the speak mode,
the order may be reconstructed by navigating along the semantic relations of struc-
ture.

24.3 Questions and Answers

In addition to using natural language for reading the content of declarative sentences
into and out of the word bank, the SLIM machine permits querying the content us-
ing natural language questions and providing natural language answers. The terms
question and answer refer to a kind of utterance, like statement and request, in con-
tradistinction to the terms interrogative and responsive, which refer to a sign kind like
declarative and imperative.

Just as declaratives may be used (PoP-1, 4.3.3) not only for statements, interroga-
tives may be used not only for questions. For example, I am asking you if you ate my
cookie. is a declarative used as a question, while Could you pass the salt? is an inter-
rogative used as a request. These are indirect uses (22.4.2) which require inferencing.
Let us consider the simplest case, namely interrogatives used as questions.

There are two basic kinds of interrogative, called (i) WH Interrogative and
(ii) Yes/No Interrogative:
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24.3.1 BASIC KINDS OF INTERROGATIVE IN NATURAL LANGUAGE

WH Interrogative Yes/No Interrogative
Who entered the restaurant? Did Peter enter the restaurant?

The interpretation of a WH Interrogative results in a functor proplet in which the
value occupied by the WH word is represented by a variable σ1 and the value of
prn is represented by a variable σ2. The interpretation of a Yes/No Interrogative re-
sults in a functor proplet in which only the prn attribute contains a variable as its
value:

24.3.2 SEARCH PROPLETS OF THE TWO BASIC KINDS OF INTERROGATIVES

WH Interrogative Yes/No Interrogative
⎡
⎣

fnc: enter
arg: σ1 restaurant
prn: σ2

⎤
⎦

⎡
⎣

fnc: enter
arg: Peter restaurant
prn: σ2

⎤
⎦

An interrogative is answered by attempting to match the search proplet with the last
(most recent) proplet of the corresponding token line. If the continuation value(s)
of this last proplet match the search proplet, the answer is found and there is no
need for further search. Otherwise, the token line is systematically searched, pro-
ceeding backwards from the last (rightmost) proplet. Consider the following exam-
ple:

24.3.3 APPLYING QUERY PATTERN OF A WH QUESTION TO A TOKEN LINE

⎡
⎣

fnc: enter
arg: σ1 restaurant
prn: σ2

⎤
⎦ owner proplet

matching ?⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: enters
verb: enter
cat: decl
sem: past
arg: Peter restaurant
mdr:
nc: (order 4)
pc: (cross 2)
prn: 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur: enters
verb: enter
cat: decl
sem: past
arg: Peter house
mdr:
nc:
pc: (cross 8)
prn: 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sur:
verb: enter
cat: n′ a′ v
sem: present
arg:
mdr:
nc:
pc:
prn:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The fnc value enter of query pattern determines the token line to be searched. The
initial attempt at matching fails because the second argument restaurant of the query
proplet and its counterpart house in the token line are not compatible. Therefore,
the search is continued by moving the pattern proplet one step to the left. This time
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pattern matching will be successful, σ1 will be bound to the value Peter and σ2 to 3.
The resulting answer will be Peter.

The search with a WH query proplet is based on the following LA Grammar:

24.3.4 DEFINITION OF LA Q1 FOR WH INTERROGATIVES QUERYING SUBJECT

STS : {([α]{rule1, rule2})}

rule1 {rule1 rule2}⎡
⎣

verb: α

ňarg: σ1 X
prn: σ2

⎤
⎦

⎡
⎣

verb: α

ňarg: σ1 Y
prn: σ2 − 1

⎤
⎦ ⇒

⎡
⎣

verb: α

ňarg: σ1 Y
prn: σ2 − 1

⎤
⎦

rule2 {rule3}⎡
⎣

verb: α

ňarg: σ1 X
prn: σ2

⎤
⎦

⎡
⎣

verb: α

arg: σ1 Y
prn: σ2 − 1

⎤
⎦ ⇒

⎡
⎣

verb: α

arg: σ1 Y
prn: σ2 − 1

⎤
⎦

rule3 { }⎡
⎣

verb: α

arg: σ1 X
prn: n

⎤
⎦

⎡
⎣

noun: σ1
fnc: α

prn: n

⎤
⎦ ⇒

⎡
⎣

noun: σ1
fnc: α

prn: n

⎤
⎦ { }

STF : {([noun: σ1] rp3)}

The prn patterns follow the convention that σ2 − 1 (for σ2 minus one) stands for the
proplet immediately preceding the current proplet in the token line. The ň operator is
negation. For example, ňarg: σ1 X means that the value which X has been bound to in
the query pattern does not match the input proplet.

The first two LA Q1 rules apply if their first input pattern does not match the con-
tinuation predicates of the current input proplet. If the proplet preceding the current
proplet does not match the second input pattern either, rule1 fires and the search con-
tinues with rule1 and rule2 using the preceding proplet as the new sentence start.
This procedure is repeated until the preceding proplet does match, or the (left) end
of the token line is reached. If the preceding proplet matches, rule2 fires and the
variable σ1 is bound to the value searched for. Then rule3 navigates to the proplet
of the queried continuation value and returns this noun proplet as the desired an-
swer.

For example, applying the pattern of the WH Interrogative in 24.3.2 to the right-
most member proplet of the token line enter in 24.3.3 will result in failure because
the continuation feature [arg: Peter house] does not match the search pattern [arg: σ1

restaurant]. Thus, the input conditions of rule1 and rule2 of LA Q1 are satisfied.
When applying rule1 and rule2 to the preceding proplet (here with the prn value 3),

rule2 happens to be successful. Thereby the variable σ1 is bound to the answer of
the query (i.e., Peter). Rule rule3 navigates to this value (i.e., the proplet Peter of
proposition 3). It is turned into a responsive and uttered as the answer.
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A query based on a Yes/No Interrogative is handled in a similar manner, using the
following LA Grammar:

24.3.5 DEFINITION OF LA Q2 FOR YES/NO INTERROGATIVES

STS : {([α]{rule1, rule2})}

rule1 {rule1 rule2}⎡
⎣

verb: α

ňarg: X
prn: σ2

⎤
⎦

⎡
⎣

verb: α

ňarg: Y
prn: σ2 − 1

⎤
⎦ ⇒

⎡
⎣

verb: α

ňarg: Y
prn: σ2 − 1

⎤
⎦

rule2 { }⎡
⎣

verb: α

ňarg: X
prn: σ2

⎤
⎦

⎡
⎣

verb: α

arg: Y
prn: σ2 − 1

⎤
⎦ ⇒

⎡
⎣

verb: α

arg: Y
prn: σ2 − 1

⎤
⎦

STF : {([fnc: α] rp1) ([fnc: α] rp2)}

In LA Q2, the responsives are based on the final states STF , the first of which rep-
resents the answer no and the second the answer yes. For example, in the attempt to
answer the Yes/No Interrogative Did Peter enter the restaurant? relative to the token
line 24.3.3, the left-most proplet will match, resulting in the final state ([fnc: α] rp2),
which is realized as the answer yes. In contrast, if there are no preceding proplets left
in the token line, LA Q2 terminates in the final state ([fnc: α] rp1), which is realized
linguistically as the answer no.

The correct answering of interrogatives interacts closely with inferencing. For ex-
ample, even if the agent’s word bank contains the episodic proposition Peter eat salad,
the interrogative Did Peter eat some food? would be answered with no. After adding
the absolute proposition salad is food to the word bank, the answer to the interrogative
Did Peter eat some food? would still be no – which is counterintuitive. What is needed
is a non-monotonic inference which, based on the premises Peter eat salad and salad
is food, results in the system’s answering Did Peter eat some food? with yes.

The formal nature of inferences depends on the kind of semantics (19.2.2), i.e.,
whether the semantics is based on metalanguage definitions (as in logical languages),
procedural execution (as in programming languages), or the assignment of bidirec-
tionally connected proplets in a database (as in natural languages in accordance with
the SLIM theory of language). This raises the question of whether and how the infer-
ences of classical as well as modern systems1 should be recreated within Database
Semantics.

As a first step towards answering this question let us consider some classic infer-
ences of propositional calculus.

1 Cf. Bibel (1993).
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24.3.6 INFERENCE SCHEMATA OF PROPOSITIONAL CALCULUS

1. A,B 2. A ∨ B,¬A 3. A → B,A 4. A → B,¬B

� A ∧ B � B � B � ¬A

5. A ∧ B 6. A 7. ¬A 8. ¬¬A

� A � A ∨ B � A → B � A

These inference schemata consist of propositions which may be either basic, e.g., A,
or complex, e.g., A ∨ B . A single premise (5–8) or two premises (1–4) appear above
the horizontal line, the latter separated by commas. The conclusion appears below the
horizontal line and is preceded by ‘�’ (turnstile).

The first inference is called conjunction and says that the truth of two arbitrary
propositions A and B implies the truth of the complex proposition A ∧ B . A transfer
of this inference into Database Semantics would amount to an operation which estab-
lishes new extrapropositional relations based on the conjunction and. This operation
may be realized by the following SLIM inference (hypothetical):

24.3.7 HYPOTHETICAL INFERENCE RULE infconj FOR CONJUNCTION

infconj:

[
fnc: α

prn: m

] [
fnc: β

prn: n

]
�⇒

⎡
⎣

fnc: α

nc: (β n)

prn: m

⎤
⎦

⎡
⎣

fnc: β

pc: (α m)

prn: n

⎤
⎦

This inference rule produces a new extrapropositional relation between two arbitrary
propositions by means of the address values (α m) and (β n), enabling a navigation
from any proposition to any other proposition asserted in the word bank.

In its logical interpretation, the inference expresses a conjunction of truth and is as
such intuitively obvious. Under these circumstances it is not relevant which proposi-
tions are conjoined as long as they are true.

In its Database Semantic interpretation, however, the inference raises the question of
why two – up to now unconnected – propositions should be concatenated. Even though
the concatenation would not result in asserting a falsehood, an uncontrolled applica-
tion of infconj would destroy coherence (Sect. 24.5). This shows that the inferences
of classical logic change their character when transferred to Database Semantics, for
which reason they should not be adopted blindly.2

24.4 Autonomous Control

While the navigation through the content of an agent’s word bank is enabled and con-
strained by the semantic relations between proplets, it is not determined completely

2 The problems of logical inference systems have been clearly identified in the literature. See
for example Russell and Norvig (1995).
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by them. First, each proplet usually provides several possible continuations. Second,
inferences connect antecedents with consequents, thus providing another method of
moving through content. Therefore, the agent requires an autonomous control for con-
necting (i) recognition, (ii) content stored in memory, and (iii) action.

To maintain the agent in a continuous equilibrium vis-à-vis constantly changing
internal and external environments, autonomous control relates current recognition to
relevant past experiences and derives appropriate actions by evaluating their outcome
in relation to the present. In this way, changes in the environment are used as the motor
driving the agent’s cognitive operations, including the processing of natural language.

Achieving balance may be based on concatenated propositions in the agent’s word
bank, which are individuated into recognition-action-recognition (rac) sequences.3

These store past experiences relating to, for example, feeling hungry. When the cog-
nitive agent’s internal recognition reads CA feels hungry into CA’s word bank once
more, this proposition is used to retrieve and highlight all earlier rac sequences begin-
ning with it:

24.4.1 RECOGNITION HIGHLIGHTING ASSOCIATED RAC SEQUENCES

CA feels hungry
|

CA feels hungry–CA searches at place X–CA finds no food
|

CA feels hungry–CA searches at place Y–CA finds a little food
|

CA feels hungry–CA searches at place Z–CA finds lots of food

Each rac sequence consists of an antecedent, a consequent, and an evaluation. The
retrieval of rac sequences with the antecedent CA feels hungry is based on the word
bank’s data structure, using the core values as the key. LA Think navigates through
these rac sequences, jumping throughout the word bank from proplet to proplet by
following their continuation values.

The evaluation is expressed by means of need vectors, pointing up or down at var-
ious degrees, including ‘no change’. When a rac sequence is activated later by an
incoming recognition, its need vector is related to the current parameter values. If one
of the parameters is out of normal range, the rac sequence with a need vector most
likely to regain balance for that parameter and with the least cost is highlighted most.
In this way, (i) the rac sequence most appropriate to regain balance is chosen, and
(ii) the associated action is realized.

3 Our notion of a rac sequence is reminiscent of Skinner’s stimulus-response model (Skinner
1957, 1974), though he would probably object to our representation of content in terms
of concatenated propositions. Furthermore, in contrast to Skinner, a rac sequence does not
require repeated training.
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For example, if CA’s need parameter for energy has dropped a little out of range,
the proposition CA feels hungry is read into the word bank. If the state of the energy
parameter corresponds best to the second rac sequence, it would be highlighted most,
causing CA to search at place Y. The first and the third rac sequence would come into
play only if CA’s search at place Y is unsuccessful.

Similarly, if CA’s need parameter for temperature has risen out of range by a lot,
CA feels hot is read into the word bank. This results in highlighting rac sequences
beginning with that proposition, e.g., (1) CA feels hot–CA moves into the shade–CA
cools down a little, (2) CA feels hot–CA moves into the basement–CA cools down a lot,
and (3) CA feels hot–CA moves into the sun–CA feels hotter. Here the need vector of
the second rac sequence is best suited to regain balance, resulting in the corresponding
action.

But what about situations never encountered before, such that there are no rac se-
quences in the word bank to be activated by current recognition? In this case, prede-
fined (‘innate’) open rac sequences provide options for action. Consider the following
example:

24.4.2 OPEN RAC SEQUENCES FOR UNKNOWN SITUATIONS

CA meets unknown animal
|

1. CA meets unknown animal–CA approaches– ?
|

2. CA meets unknown animal–CA waits– ?
|

3. CA meets unknown animal–CA flees– ?

These rac sequences are open because due to lack of experience no evaluation is
known (represented by ‘?’). However, there may be predefined need vectors relating
to the fear parameter

For example, appearance of the unknown animal as small and cuddly will lower the
fear parameter, resulting in agreement with the first rac sequence. Appearance as big
and ferocious will increase the fear, resulting in agreement with the third rac sequence.
If the animal’s appearance is uncertain, CA chooses the second rac sequence.

Provided that CA survives the encounter, a new complete rac sequence evaluating
CA’s action towards this particular animal or kind of animal will be stored in CA’s
word bank. Thus, a situation without the agent having an appropriate rac sequence
available will rarely occur, because as soon as this situation arises again there will be
a rac sequence in the agent’s database.

If there are no external or internal demands activating specific navigation patterns
appropriate to the situation at hand, the navigation of LA Think may take the form
of a random, aimless motion through the contents of a word bank analogous to free
association in humans. Thereby, two problems requiring a general solution may arise,
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namely relapse and split. A relapse arises if an LA navigation continues to traverse the
same proplet sequence in a loop. A split arises if a given START proplet is accepted
by more than one navigation rule in an active rule package.

Relapse and split are avoided by tracking principles. Their technical basis are coun-
ters indicating for each proplet when it was traversed. Adding traversal counters gives
the static nature of a word bank a dynamic aspect insofar as they make the course of
the navigation visible as a track in terms of (positive or negative) highlighting.

24.4.3 TRACKING PRINCIPLES OF LA NAVIGATION

1. Completeness
Within an elementary proposition, proplets already traversed during the current
navigation are marked with # (negative highlighting).

2. Uniqueness
If several START or NEXT proplets are available, only one is selected, whereby
the choice is based on an activated rac sequence or at random.

3. Recency
In extrapropositional navigations, propositions which have been most recently
traversed receive negative highlighting.

4. Frequency
When entering a new subcontext, the paths most frequently traversed in previous
navigations are highlighted.

The first principle prevents intrapropositional relapses and premature extraproposi-
tional continuations. The second principle prevents an LA navigation from traversing
several thought paths simultaneously. The third principle prevents extrapropositional
relapses and ensures that a subcontext is traversed as completely as possible in the
course of a free navigation. According to the fourth principle, the free navigation of
a new subcontext first traverses the propositions which have been traversed most fre-
quently in the past – whereby it is assumed that under the normal circumstances of
everyday life the most important navigation patterns are activated most often.

24.5 Coherence

In order for the agent to survive and prosper in its environment, the content in its word
bank must be coherent. This requires adequate recognition and action performance of
the agent’s external interfaces. Today’s standard computers, however, provide mainly
a keyboard and a screen for moving alphanumerical sequences in and out, which is
not sufficient.

Until the necessary recognition and action interfaces become available, one might
consider simulating contextual cognition as a virtual reality (1.1.3). This would allow
the user to control movement through an artificial world (automated cinematography;
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Funge et al. 1999) and to communicate with artificial agents which interact with their
virtual task environment (Rickel and Johnson 1999; Loyall and Bates 1993).

It turns out, however, that virtual reality and Database Semantics pursue different
goals: virtual reality designs artificial worlds containing artificial agents for the inter-
action with natural agents (i.e., the users), while Database Semantics designs artificial
agents for the interaction with the natural world containing natural agents. Reliance
on virtual reality is problematic for Database Semantics for the following reasons:

First, it is a misdirection of effort; rather than grounding coherence in real interac-
tion with the external world, the programming work is directed mostly toward simulat-
ing convincing 3-D environments with animated agents. Second, an artificial model
of the world is not credible as a procedural foundation of word semantics. Third,
a simulation of reference is of little help for arriving at real reference.

There are both practical and theoretical reasons why the cognitive agent’s interac-
tion with the real world in terms of artificial recognition and action should be neither
simulated nor avoided. Regarding practical applications, an absence of such real in-
teraction makes it impossible for the system to translate natural language commands
into real-world actions or to report real-world observations in natural language.

Regarding theoretical development, such an absence deprives the system of two
essential foundations: One is a procedural definition of elementary concepts, needed
for the autonomous buildup of contextual content and re-used as the literal meanings
of language. The other is the grounding of cognitive coherence in contextual content.

A propositional content such as field contain triangle (3.4.4) may be read into the
word bank either directly via immediate perception, or indirectly via spoken or written
language, film, etc. (4.3.1). When content is read in directly by a well-functioning
system, the content’s coherence follows from the coherence of the external world,
i.e., the temporal and spatial sequencing of events, the part-whole relations, etc.

Content stored on media, in contrast, allows for the possibility that an author has
reordered and reconnected elements familiar from immediate recognition and action.
This is why mediated content may be incoherent.

For example, a swimmer standing at the poolside, diving into the water, and disap-
pearing with a splash is coherent. In contrast, a pair of feet appearing in the foaming
water with a swimmer flying feet first into the air and landing at the poolside would be
incoherent – unless it is specified in addition that the content is represented by means
of a medium, e.g., a backward running movie.

Similarly, for people to be conversing in English is coherent. In contrast, a deer
conversing in English with a skunk would be incoherent – unless it is specified that
the content is represented by means of a medium, e.g., a piece of fictional language.

An agent’s idea of what is coherent and what is not influences whether a content
is evaluated as possible, plausible, or even true. Other factors are whether it happens
to be a mediated or a direct content. The value of a mediated content, acquired via
language, film, and the like, depends on how the agent evaluates the reliability of the
source, e.g, the speaker. An immediate content, acquired via the agent’s direct obser-
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vation, in contrast, is usually regarded as the most reliable. Nevertheless, immediate
content is not infallible, as shown by optical illusions, conflicting eyewitness reports,
and changing ideas in the history of science of what is coherent and what is true.

Exercises

Section 24.1
1. Does the hear mode of DBS apply automatic word form recognition and

syntactic-semantic parsing in separate phases?
2. Why is the derivation in 24.1.1 surface compositional?
3. Why is the derivation in 24.1.1 time-linear?
4. Why is the content derived in 24.1.1 suitable for a handling of reference as an

agent internal pattern matching?
5. Why is the content derived in 24.1.1 suitable for storage in a word bank?
6. Why is a word bank content-addressable?
7. Explain the difference between extrapropositional and intrapropositional rela-

tions. Does this distinction affect storage of the associated contents in a word
bank?

Section 24.2
1. Why does language production require conceptualization?
2. Explain the notions of coherence and cohesion.
3. What is the database schema of a word bank and why is it essential for imple-

menting an autonomous navigation through stored content?
4. What is a token line?
5. What is the key for the storage and retrieval of proplets in a word bank?
6. Which database procedures require finding the token line for a particular core

value? Explain possible computational techniques for finding the token line for
rabbit.

7. Describe the mechanism of navigating from a given proplet to a next proplet.
8. How does the navigation contribute to the speak mode?
9. Which proplet values are used for realizing a surface?

Section 24.3
1. Describe the difference between pipeline, interactive, and integrated systems of

natural language generation and compare them with natural language production
within the SLIM theory of language. How do they handle conceptualization?
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2. What is the difference between a statement and a declarative sentence? How does
this relate to PoP-1?

3. What is the difference between a question and an interrogative sentence?
4. What is the difference between an answer and a responsive?
5. What are indirect language uses and what is required for their production and

interpretation?
6. How many kinds of WH Interrogatives are there in English?
7. Compare the responsives for answering WH questions and Yes/No questions.
8. Explain the DBS mechanism for finding the answer to a question.
9. Describe the differences between the query proplets for the different kinds of

interrogatives. Why do they contain variables?
10. Explain the different functioning of LA Q1 and LA Q2.
11. Explain which aspect of a word bank’s database schema supports the automatic

answering of natural language interrogatives.
12. What is the role of inferences for adequate query answering?

Section 24.4
1. What is the task of an agent’s autonomous control?
2. How is the agent’s memory involved in providing adequate behavior?
3. What are the agent’s options in a situation never encountered before?
4. Explain the tracking principles of DBS.

Section 24.5
1. Can the DBS system be used on a standard computer?
2. Discuss the possible contribution of virtual reality (VR) to the goal of construct-

ing a talking robot.
3. What is the contribution of a robot’s recognition and action capabilities to the

semantics of DBS?
4. Who is responsible for the veracity of the data in an agent’s word bank? Discuss

different setups.
5. How does the external environment determine the agent’s notion of coherence?
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